
Report on an OCaml Type Debugger

Kanae Tsushima
Ochanomizu University

tsushima.kanae@is.ocha.ac.jp

Kenichi Asai
Ochanomizu University

asai@is.ocha.ac.jp

1 Introduction

Strongly typed languages enable us to reduce
runtime errors by eliminating type errors at com-
pile time. However, it is not always easy to find the
source of type errors from error messages given by
a compiler.

For example, Figure 1 shows a small program
with an error written in OCaml. The function f is
supposed to receive a list of numbers and return a
list of the positive numbers among them. Because
the programmer wrote “n” in the predicate part of
the if-expression instead of “n > 0”, however, the
function f is typed bool list → bool list, re-
sulting in an error at f [1; -1; 3]:

Error: This expression has type int but
an expression was expected of type bool

Note that the intended source of the error is in
function f and is different from the error message.
Furthermore, the type of f at “f [1; -1; 3]” is
constrained to bool list → bool list although
intended type of f is int list → int list.

2 Compositional type inference

There have been many researches on helping pro-
grammers to locate and fix type errors. Among
them, Chitil [1] proposed an interactive type debug-
ger for Haskell in 2001. The main idea of his system
is to employ compositional type inference (rather
than Hindley-Milner type inference): the type of an
expression is inferred solely from its subexpressions.
Figure 2 shows the compositional inference tree for
a part of the program in Figure 1.

In compositional type inference, the type of f is
determined locally. For example, the type of f is at
first an arbitrary type variable c in the tree. When
it is applied to tl, it becomes d → e. When “f
tl” is further placed in the wider context, the type

(* f : int list -> int list *)

let rec f lst = match lst with

| [] -> []

| n :: tl -> if n then n :: f tl else f tl

in f [1; -1; 3]

Figure 1. Example program

{n:a}`n:a

{}`(::):pl {n:b}`n:b

{n:b} ` (n ::):b list→b list

{f:c}`f:c {tl:d}`tl:d

{f:d→e, tl:d} ` f tl:e

{n:b, tl:c, f:c→b list} ` n::(f tl):b list

{n:bool, tl:c, f:c→bool list}`if-exp:bool list

pl = x → x list → x list (from polymorphic environment)
if-exp = if n then n :: (f tl) else (f tl)

Note: we omit the else-part

Figure 2. Compositional type inference

Γ `n:bool

Γ `(::):pl Γ `n:bool

Γ ` (n ::):f-type

Γ `f:f-type Γ `tl:bool list

Γ ` f tl:bool list

Γ ` n::(f tl):bool list

Γ `if-exp:bool list

f-type:bool list → bool list
Γ = {n:bool, tl:bool list, f:bool list → bool list}

Figure 3. Hindley-Milner type inference

of f is elaborated. If the programmer thinks that f
should return a list of integers, he immediately sees
that the if-expression (at the bottom of the tree) is
wrong because the return type of f is (for the first
time) bool list at this node.

This is in contrast to Hindley-Milner type infer-
ence where f has the same type throughout the pro-
gram (Figure 3), making it harder to find why f has
type bool list → bool list.

3 Algorithmic Debugging

To locate the source of an error, Chitil applies al-
gorithmic debugging [2] on the type inference tree.
Starting from the node of the type inference tree



where a type error occurs, the debugger locates the
source of an error by repeatedly asking the program-
mer if the typing judgement is correct according to
his intention. For example, at the bottom of Figure
3, the programmer is asked if the if-expression has
type bool list under the environment {n:bool,
tl:c,f:c→bool list}. Because the programmer
thinks that f should return int list, the answer is
“no”. After walking around the inference tree ask-
ing questions, the debugger locates the source of an
error at the node whose premises are all correct, but
the conclusion is not. In Figure 3, the error is at the
if-expression because all of its premises are correct.

Chitil’s system is attractive because the user is
directed to the source of an error simply by answer-
ing questions. In this abstract, we report on our
initial experience of using the type debugger (reim-
plemented for OCaml) in the introductory OCaml
course in Ochanomizu University as well as the ex-
tension to the type debugger we have implemented.

4 User interface

Problems Although Chitil’s framework is conceptu-
ally elegant, to use it in practice, we need to provide
user interface. We also have to support not only the
minimal language to show the principle of algorith-
mic debugging but also more practical subset of the
language.

Solution We have implemented an Emacs interface
to our type debugger, which highlights the part of
the program the debugger is currently focusing on.
The highlighted part changes as the debugger walks
around the type inference tree. We have covered
almost all the syntax required to program in the
OCaml course (to program the shortest path prob-
lem for the Tokyo metro network), including type
definition and exception handling.

5 Easier and reusable questions

Problems Chitil’s original type debugger asks
whether the whole typing is correct or not, as in:

if n then n :: (f tl) else (f tl) :
{n:bool, tl:c, f:c→bool list} ` bool list
Are intended types an instance?

However, it is not easy for beginners to answer this
question directly, because one has to determine if
all the parts of the typing are correct. Furthermore,
even if the answer was no, we do not obtain infor-
mation on which part of the typing was wrong.

Solution We decompose each question into smaller
pieces. We ask whether all the typings in the envi-
ronment as well as the body of the typing are cor-
rect separately. Although the number of questions
increases, it becomes much easier (especially for be-
ginners) to answer. Furthermore, we can reuse the
previous answers to automatically answer the same
(or inferable) questions. We also provide an option
to input the correct type instead of simply answer-
ing “no”. The input type can be used to drastically
reduce the number of questions.

6 Detailed error messages

Problems After the type debugger have located the
source of a type error, the programmer must fix
it. Because algorithmic debugging simply locates an
expression in which a type error occurs, it is not im-
mediately clear (especially for beginners) what was
wrong. For example, in Figure 3, we are notified
that the if expression is wrong, but to actually fix
the problem, we have to find out that the predicate
part was not a boolean.

Solution We have improved our type debugger to
show detailed error messages. Since we have infor-
mation on the intended types of variables through
a series of decomposed questions, we can use it to
infer precisely the source of errors. In the previous
example, we can show that the predicate part of the
if-expression was not type correct, because its type
is not bool according to the programmer’s intended
type.

7 Experience and future work

Since most beginning students are not used to
OCaml types, it is difficult for them to answer ques-
tions properly, even the decomposed questions de-
scribed in Section 5. In this respect, the three ex-
tensions we have implemented were essential but not
enough. We need more tailored questions and error
messages. Still, some students find the debugger
useful, after they are used to OCaml types.

According to the log of the debugger, more than
two thirds of the errors were at function applica-
tions. They are further classified into simple type
conflict between the types of functions and argu-
ments, and the insufficient number of arguments.
It turned out that our debugger can locate most
of these type errors if the debugger is provided



with the programmer’s correct intended types (ei-
ther from the programmer’s response or from the
purpose statements of functions which we utilize
in our debugger). However, students sometimes do
not understand their intention properly, and answer
“yes” to all the questions!

One of the difficulties beginning students face is
partial application. We plan to improve our type
debugger to handle partial application specially, so
that beginning students can easily follow what is
going on. We also plan to interview students when
they give wrong answers.

Acknowledgement. We would like to thank Olaf
Chitil for explanation on his work and helpful com-
ments.

References

[1] Chitil, O. “Compositional explanation of types and
algorithmic debugging,” ICFP ’01, pp 193–204
(September 2001).

[2] Shapiro, E. Y. Algorithmic Program Debugging,
Cambridge, MA: MIT Press (1983).


