
Polymorphic
Delimited Continuations

Kenichi Asai

Ochanomizu University

Yukiyoshi Kameyama

University of Tsukuba

November 30, 2007

Outline of the talk

1. The language: λ-calculus + let + shift/reset

2. Example: type-safe printf (sub Main Part)
◮ delimited continuations
◮ answer type modification
◮ monomorphic type system

3. Let-polymorphism (Main Part)
◮ answer type polymorphism for delimited continuations
◮ purity restriction

4. Correspondence to CPS translation

5. Extension to System F

6. Related Work / Conclusion

Message: Polymorphism can be introduced naturally.

The Language: λ-calculus + let + shift/reset

Syntax:

v ::= x variable
| λx . e abstraction

e ::= v value
| e1 e2 application
| let x = e1 in e2 let
| Sk . e shift
| 〈e〉 reset

Evaluation context:

E ::= [] | v E | E e | 〈E 〉
| let x = E in e

Pure evaluation context:

F ::= [] | v F | F e

| let x = F in e

(i.e., no reset surrounds the hole.)

Reduction Rules:

E [R] Ã E [e] where R Ã e is one of:

(λx . e) v Ã e[v/x]
let x = v in e Ã e[v/x]

〈v〉 Ã v

〈F [Sk . e]〉 Ã 〈let k = λx . 〈F [x]〉 in e〉

(In the paper, we also have fix and if.)

Example: Type-safe Printf

Goal:

sprintf (λ_. "Hello world!")
Ã "Hello world!"

sprintf (λ_. "t is " ^ % int ^ "!") 4
Ã "t is 4!"

sprintf (λ_. % str ^ " is " ^ % int ^ "!") "x" 3
Ã "x is 3!"

Solution:

let int = λx . string_of_int x (= string_of_int)
let str = λx . x

let % to_str = Sk . λn. k (to_str n)
let sprintf thunk = 〈thunk ()〉

cf. CPS solution: [Danvy ’98]

Example: Type-safe Printf

Key observation:
(% int) changes the type of the context from a string to a function.

sprintf (λ_. "t is " ^ % int ^ "!") 4
Ã 〈(λ_. "t is " ^ % int ^ "!") ()〉 4
Ã 〈"t is " ^ % int ^ "!"〉 4

Ã 〈"t is " ^ (Sk . λn. k (int n)) ^ "!"〉 4
Ã 〈let k = λx . 〈"t is " ^ x ^ "!"〉 in λn. k (int n)〉 4

Ã 〈λn. 〈"t is " ^ int n ^ "!"〉〉 4
Ã (λn. 〈"t is " ^ int n ^ "!"〉) 4
Ã 〈"t is " ^ int 4 ^ "!"〉
Ã 〈"t is 4!"〉
Ã "t is 4!" cf. int = string_of_int

〈F [Sk . e]〉 Ã 〈let k = λx . 〈F [x]〉 in e〉

Answer Type Modification

Superscripts show the type of the expression.
i stands for int and s stands for string.

〈"t is " ^ % int ^ "!"〉s 4

Ã 〈"t is " ^ (Sk . λn. k (int n))s ^ "!"〉s 4
Ã 〈let k

s→s = λx . 〈"t is " ^ x
s ^ "!"〉s inλn

i. k (int n)〉i→s 4

Ã 〈λn
i. 〈"t is " ^ (int n)s ^ "!"〉s〉i→s 4

or more in general:

〈F [Sk . eβ]τ 〉α Ã 〈let k
τ→α = λx . 〈F [x]τ 〉α in e

β〉β

Thus, a type judgement needs three types: Γ;α ⊢ e : τ ; β.

“Under a type environment Γ, an expression e has type τ , and the
type of context (or answer type) changes from α to β.”

Monomorphic Type System [DanvyFilinski ’89]

Two Judgements: Γ ⊢p e : τ and Γ;α ⊢ e : τ ; β .

Typing rules:

Γ ⊢p e : τ

Γ;α ⊢ e : τ ; α
exp

(x : τ ∈ Γ)

Γ ⊢p x : τ
var

Γ, x : σ; α ⊢ e : τ ; β

Γ ⊢p λx . e : σ/α → τ/β
fun

Γ; γ ⊢ e1 : σ/α → τ/β; δ Γ;β ⊢ e2 : σ; γ

Γ;α ⊢ e1 e2 : τ ; δ
app

Γ, k : τ/t → α/t; σ ⊢ e : σ; β

Γ;α ⊢ Sk . e : τ ; β
shift

Γ;σ ⊢ e : σ; τ

Γ ⊢p 〈e〉 : τ
reset

◮ The judgement Γ;α ⊢ e : τ ; β and a function type
σ/α → τ/β accommodate answer type modification.

◮ If no control effect is used, the answer type is always the same.

Example: Type-safe Printf

k : s → s ⊢p k : i → s
var

· · ·

n : i ⊢p int n : s
app

k : s → s, n : i ⊢p k (int n) : i → s
app

k : s → s ⊢p λn. k (int n) : i → s
fun

k : s → s; i → s ⊢ λn. k (int n) : i → s; i → s
val

·; s ⊢ Sk . λn. k (int n) : s; i → s
shift

· · ·

·; s ⊢ "t is " ^ (Sk . λn. k (int n)) ^ "!" : s; i → s

· ⊢p 〈"t is " ^ (Sk . λn. k (int n)) ^ "!"〉 : i → s
reset

where

i → s abbreviates i/α → s/α
s → s abbreviates s/α → s/α

for any α.

Example: Type-safe Printf

In the previous slide, (% int) was typed as:

·; s ⊢ Sk . λn. k (int n) : s; i → s

What is the type of %, then?

let % = λto_str .Sk . λn. k (to_str n)

We have the following derivation:

to_str : α → s; s ⊢ Sk . λn. k (to_str n) : s; α → s

· ⊢p λto_str .Sk . λn. k (to_str n) : (α → s)/s → s/(α → s)
fun

For (% int), α = i, whereas for (% str), α = s.

=⇒ We need polymorphism!

Let-Polymorphism

The introduction of let-polymorphism is completely standard...

Γ ⊢p e1 : σ Γ, x : Gen(σ; Γ); α ⊢ e2 : τ ; β

Γ;α ⊢ let x = e1 in e2 : τ ; β
let

(x : A ∈ Γ and τ ≤ A)

Γ ⊢p x : τ
var

Gen(σ; Γ) : generalize free type variables in σ that do not occur
free in Γ

τ ≤ A : instanciate generalized type variables to mono types

... except for two places.

(1) answer type polymorphism for delimited continuations

Γ, k : ∀t. (τ/t → α/t); σ ⊢ e : σ; β

Γ;α ⊢ Sk . e : τ ; β
shift

(2) Purity Restriction

Unrestricted polymorphism leads to an unsound type system.

e1 has to be pure

Γ ⊢p e1 : σ Γ, x : Gen(σ; Γ);α ⊢ e2 : τ ; β

Γ;α ⊢ let x = e1 in e2 : τ ; β
let

◮ Purity restriction ensures type soundness.

◮ It is weaker than the value restriction. (Non-value reset
expressions can be made polymorphic.)

Technical Results (1)

Theorem. Subject reduction, progress, and unique decomposition,
hold. (The type system is sound.)

Thus, a well-typed term does not go wrong. In addition, strong
soundness holds: a well-typed term evaluates to the value of the
inferred type.

Theorem. The principal type exists. We can infer it using a variant
of the algorithm W.

Theorem. The calculus is confluent. The calculus without fix is
strongly normalizing.

Note: The calculus with cupto [Gunter et al.’95] is not strongly
normalizing.

Theorem. The calculus is compatible with CPS translation.

Correspondence to CPS translation

CPS translation:

(type) t
∗ = t for a type variable t

(σ/α → τ/β)∗ = σ∗ → (τ∗ → α∗) → β∗

(∀t. A)∗ = ∀t. A∗

(env) (Γ, x : A)∗ = Γ∗, x : A
∗

(val) v
∗ = v

(λx . e)∗ = λx . [[e]]

(exp) [[v]] = λκ. κ v
∗

[[e1 e2]] = λκ. [[e1]] (λm. [[e2]] (λn. m n κ))
[[Sk . e]] = λκ. let k = λnκ′. κ′ (κ n) in [[e]] (λm. m)

[[〈e〉]] = λκ. κ ([[e]] (λm. m))
[[let x = e1 in e2]] = λκ. let x = [[e1]] (λm. m) in [[e2]]κ

◮ Polymorphism in the source language is expressed by the
polymorphism in the target language (a simply-typed
λ-calculus with polymorphic let).

Technical Results (2)

Types and Equality are preserved through CPS translation.

Theorem. Preservation of Types:

If Γ;α ⊢ e : τ ; β, then Γ∗ ⊢ [[e]] : (τ∗ → α∗) → β∗.
If Γ ⊢p e : τ , then Γ∗ ⊢ [[e]] : (τ∗ → α) → α for any α.

Theorem. Preservation of Equality:

If Γ;α ⊢ e1 : τ ; β and e1 Ã
∗

e2, then [[e1]] = [[e2]].

Impredicative Polymorphism

The most results carry over to (call-by-value) System F with shift
and reset.

(Standard Strategy)

v ::= x variable
| λx : τ . e abstraction
| Λt. e type abst.

e ::= v value
| e1 e2 application
| e {τ} type appl.
| Sk : τ . e shift
| 〈e〉 reset

(Λt. e) τ Ã e[τ/t]

(ML-like Strategy)

v ::= x variable
| λx : τ . e abstraction
| Λt. v type abst. 1

e ::= v value
| e1 e2 application
| e {τ} type appl.
| Sk : τ . e shift
| 〈e〉 reset
| Λt. e type abst. 2

(Λt. v) τ Ã v [τ/t]

Difference of the two strategies

Consider: let f = 〈e〉 in (f f) 0, which is in System F:

(λf : ∀t. t → t. (f {i → i}) (f {i}) 0) (Λt. 〈e〉)

◮ In the standard strategy, evaluation of 〈e〉 is postponed until
Λt. 〈e〉 is applied to a type, giving:

((Λt. 〈e〉) {i → i}) ((Λt. 〈e〉) {i}) 0

It generalizes “polymorphism by name” [Leroy ’93].

◮ In the ML-like strategy, evaluation of 〈e〉 is done only once
before Λt. 〈e〉 is passed to f.

Technical Results (3)

With the following typing rules (with purity restriction):

Γ ⊢p e : τ

Γ ⊢p Λt. e : ∀t. τ
tabs, t 6∈ FTV(Γ)

Γ;α ⊢ e : ∀t. τ ; β

Γ;α ⊢ e {σ} : τ [σ/t]; β
tapp

we have:

Theorem. The type system is sound for both the strategies.

Furthermore, with a proper definition of CPS translation (omitted;
see the paper), we have:

Theorem. Types and equality are preserved through CPS
translation for both the strategies.

Related Work

Type systems for control operators:

◮ Monomorphic type system by Danvy and Filinski [TR ’89].

◮ Harper, Duba, and MacQueen [JFP ’93] introduced callcc

into Standard ML. Strong type soundness does not hold.

◮ Filinski [POPL ’94] presented an implementation of shift/reset
in terms of callcc. Answer type is fixed.

◮ Gunter, Rémy, and Riecke [FPCA ’95] proposed typed cupto

operator with strong type soundness. Answer type is fixed.

◮ Kiselyov, Shan, and Sabry [ICFP ’06] introduced shift/reset
into OCaml with let-polymorphism.

System F, CPS translation, and control operators:

◮ Harper and Lillibridge [POPL ’93] presented CPS translation
from Fω+callcc to Fω.

Conclusion

Polymorphism can be introduced naturally, with:

◮ a type system that mentions answer types,

◮ purity restriction, and

◮ answer type polymorphism for captured continuations.

Number of expected results actually hold:

◮ Strong type soundness, confluence, strong normalization

◮ Existence of the principal type and type inference algorithm

◮ Preservation of types and equality through CPS translation

The framework naturally extends to call-by-value System F.

As the foundation of polymorphic delimited continuations is
established, we now want deeper understanding and better theories
of delimited continuations. E.g., logical relations for polymorphic
delimited continuations, relationship to focal parametricity
[Hasegawa ’06], etc.

	Title
	Outline
	Language
	Example
	Example
	Answer Type Modification
	Monomorphic Type System
	Example: Typing Derivation
	Example: Type of Percent
	Let-Polymorphism
	Purity Restriction
	Technical Results (1)
	Correspondence
	Technical Results (2)
	Impredicative Polymorphism
	Difference
	Technical Results (3)
	Related Work
	Conclusion

