
Introduction to Delimited Continuations

Typing Printf

（継続を使った Printf の型付け）

Kenichi Asai

Ochanomizu University

April 13, 2008



Outline of the talk

◮ times (introduction)

(1) in Direct Style with exception

(2) in Continuation-Passing Style (CPS)

◮ sprintf

(3) in Continuation-Passing Style (CPS)

(4) in Direct Style with shift/reset

◮ Related Work / Summary



(1) Times: Direct Style

Multiply elements of a given list:

let rec times lst = match lst with

[] -> 1

| first :: rest -> first * times rest

For example,

times [1; 2; 3; 4; 5]

Ã 1 * times [2; 3; 4; 5]

Ã 1 * (2 * times [3; 4; 5])

Ã 1 * (2 * (3 * times [4; 5]))

Ã 1 * (2 * (3 * (4 * times [5])))

Ã 1 * (2 * (3 * (4 * (5 * times []))))

Ã 1 * (2 * (3 * (4 * (5 * 1))))

Ã
∗ 120



(1) Times: Direct Style

Multiply elements of a given list:

let rec times lst = match lst with

[] -> 1

| first :: rest -> first * times rest

For example,

times [1; 2; 0; 4; 5]

Ã 1 * times [2; 0; 4; 5]

Ã 1 * (2 * times [0; 4; 5])

Ã 1 * (2 * (0 * times [4; 5]))

Ã 1 * (2 * (0 * (4 * times [5])))

Ã 1 * (2 * (0 * (4 * (5 * times []))))

Ã 1 * (2 * (0 * (4 * (5 * 1))))

Ã
∗ 0



(1) Times: Direct Style

If 0 is found, we can return 0 immediately:

let rec times lst = match lst with

[] -> 1

| 0 :: rest -> 0

| first :: rest -> first * times rest

Then, we have:

times [1; 2; 0; 4; 5]

Ã 1 * times [2; 0; 4; 5]

Ã 1 * (2 * times [0; 4; 5])

Ã 1 * (2 * 0)

Ã 1 * 0

Ã 0

We could avoid traversing [4; 5], but the unnecessary
multiplication still remains.



(1) Times: Direct Style with Exception

To discard the unnecessary multiplication, we use exception:

let rec times lst = match lst with

[] -> 1

| 0 :: rest -> raise Zero

| first :: rest -> first * times rest

Then, we have:

try (times [1; 2; 0; 4; 5]) with Zero -> 0

Ã try (1 * times [2; 0; 4; 5]) with Zero -> 0

Ã try (1 * (2 * times [0; 4; 5])) with Zero -> 0

Ã try (1 * (2 * raise Zero)) with Zero -> 0

Ã 0

◮ The context (1 * (2 * □)) is discarded, enabling non-local
jump.

◮ Exception mechanism is required.



(2) Times: Continuation-Passing Style (CPS)

Continuation = work to be done after the current computation.

let rec times lst cont = match lst with

[] -> cont 1

| first :: rest ->

times rest (fun r -> cont (first * r))

Then, we have:

times [1; 2; 0; 4; 5] i

Ã times [2; 0; 4; 5] (fun r -> i (1 * r))

Ã times [0; 4; 5] (fun r -> i (1 * (2 * r)))

Ã times [4; 5] (fun r -> i (1 * (2 * (0 * r))))

Ã times [5] (fun r -> i (1 * (2 * (0 * (4 * r)))))

Ã times [] (fun r -> i (1 * (2 * (0 * (4 * (5 * r))))))

Ã i (1 * (2 * (0 * (4 * (5 * 1)))))

Ã
∗ i 0

where i is an initial continuation (for example, fun x -> x).



(2) Times: Continuation-Passing Style (CPS)

Avoid traversing over the list after 0 is found:

let rec times lst cont = match lst with

[] -> cont 1

| 0 :: rest -> cont 0

| first :: rest ->

times rest (fun r -> cont (first * r))

Then, we have:

times [1; 2; 0; 4; 5] i

Ã times [2; 0; 4; 5] (fun r -> i (1 * r))

Ã times [0; 4; 5] (fun r -> i (1 * (2 * r)))

Ã i (1 * (2 * 0))

Ã i (1 * 0)

Ã i 0

Still, 1 * (2 * 0) is computed.



(2) Times: Continuation-Passing Style (CPS)

By not using cont, 0 is returned to the original call site.

let rec times lst cont = match lst with

[] -> cont 1

| 0 :: rest -> 0 (* cont is discarded! *)

| first :: rest ->

times rest (fun r -> cont (first * r))

Then, we have the following (where id = fun x -> x):

times [1; 2; 0; 4; 5] id

Ã times [2; 0; 4; 5] (fun r -> id (1 * r))

Ã times [0; 4; 5] (fun r -> id (1 * (2 * r)))

Ã 0

◮ Non-local jump is realized through writing a program in CPS.

◮ We have to write whole the program in CPS.



(2) Times: Direct Style with shift/reset

Write a program in direct style with:

◮ shift : captures the current contiuation (up to reset)

◮ reset : installs the empty (identity) continuation

let rec times lst = match lst with

[] -> 1

| 0 :: rest -> shift (fun cont -> 0)

| first :: rest -> first * times rest

Then, we have:

reset (fun () -> times [1; 2; 0; 4; 5])

Ã reset (fun () -> 1 * times [2; 0; 4; 5])

Ã reset (fun () -> 1 * (2 * times [0; 4; 5]))

Ã reset (fun () -> 1 * (2 * shift (fun cont -> 0)))

Ã 0

where cont = fun r -> reset (fun () -> (1 * (2 * r))).



Printf

Goal:

sprintf (lit "Hello world!")

Ã "Hello world!"

sprintf (lit "Hello " ++ lit "world!")

Ã "Hello world!"

sprintf (% str ++ lit "world!") "Hello "

Ã "Hello world!"

sprintf (% str ++ lit " is " ++ % int) "t" 3

Ã "t is 3"

The types of the boxes depend on the first argument of sprintf.
=⇒ Do we need dependent types? – No!



Observation

The occurrence of % changes the type of the box, in other words,
the type of the context (=continuation!).

sprintf (% str ++ lit " is " ++ % int) "t" 3

Ã "t is 3"

If the current contiuation is available at hand, we could write a
type-safe sprintf without using dependent types.

Danvy [JFP 1998] did this by writing the boxed parts in CPS.



(3) Printf: Continuation-Passing Style (CPS)

The continuation is initialized by sprintf:

let sprintf pattern = pattern id

The string literal is simply passed to the continuation:

let lit s cont = cont s

For example, we have:

sprintf (lit "Hello world!")

Ã lit "Hello world!" id

Ã id "Hello world!"

Ã "Hello world!"



(3) Printf: Continuation-Passing Style (CPS)

Two patterns, p1 and p2, are concatenated in a CPS manner:

let (++) p1 p2 cont =

p1 (fun x -> p2 (fun y -> cont (x ^ y)))

Then, we have:

sprintf (lit "Hello " ++ lit "world!")

Ã (lit "Hello " ++ lit "world!") id

Ã lit "Hello " (fun x -> lit "world!" (fun y ->

id (x ^ y)))

Ã
∗ "Hello world!"



(3) Printf: Continuation-Passing Style (CPS)

Let int and str be functions that return string representation of
their argument:

let int x = string_of_int x

let str (x : string) = x

Then, % can be defined as follows:

let % to_str cont = fun z -> cont (to_str z)

We have:

sprintf (% str ++ lit "world!") "Hello "

Ã (% str ++ lit "world!") id "Hello "

Ã % str (fun x -> lit "world!" (fun y -> id (x ^ y)))

"Hello "

Ã (fun z -> (. . .) (str z)) "Hello "

Ã
∗ "Hello world!"



(3) Printf: Continuation-Passing Style (CPS)

Multilpe uses of % leads to accepting more arguments.

sprintf (% str ++ % int) "t" 3

Ã (% str ++ % int) id "t" 3

Ã % str (fun x -> % int (fun y -> id (x ^ y))) "t" 3

Ã
∗ (fun z -> (. . .) (str z)) "t" 3

Ã % int (fun y -> id ("t" ^ y)) 3

Ã (fun z -> (. . .) (int z)) 3

Ã
∗ id ("t" ^ "3")

Ã id "t3"

Ã "t3"



(3) Printf: Continuation-Passing Style (CPS)

Complete program (executable in OCaml):

let sprintf pattern = pattern (fun (s : string) -> s)

let lit s cont = cont s

let (++) p1 p2 cont =

p1 (fun x -> p2 (fun y -> cont (x ^ y)))

let int x = string_of_int x

let str (x : string) = x

(* % : (’b -> string) -> (string -> ’a) -> ’b -> ’a *)

let (%) to_str cont = fun z -> cont (to_str z)

◮ Practical note: Because % in OCaml is an infix operator, we
have to write (%) instead of %.



(4) Printf: Direct Style with shift/reset

By transforming the CPS solution back to direct style (with shift
and reset), we obtain:

let sprintf pattern ≡ reset (fun () -> pattern)

let lit s = s

let (++) p1 p2 = p1 ^ p2

let int x = string_of_int x

let str (x : string) = x

let (%) to_str =

shift (fun cont -> fun z -> cont (to_str z))

To run this program, one requires implementation of shift/reset
that supports answer type modification.



(4) Printf: Direct Style with shift/reset

Abbreviating (reset (fun () -> . . .)) as 〈 . . . 〉, we have:

sprintf (% str ^ "world!") "Hello "

Ã 〈 % str ^ "world!" 〉 "Hello "

Ã 〈 (shift (fun cont -> fun z -> cont (str z)))

^ "world!" 〉 "Hello "

Ã 〈fun z -> 〈 str z ^ "world!" 〉〉 "Hello "

Ã
∗ "Hello world!"

In CPS, it was:

sprintf (% str ++ lit "world!") "Hello "

Ã (% str ++ lit "world!") id "Hello "

Ã % str (fun x -> lit "world!" (fun y -> id (x ^ y)))

"Hello "

Ã (fun z -> (. . .) (str z)) "Hello "

Ã
∗ "Hello world!"



Related Work

Printf problem:

◮ Danvy [JFP 1998] presented a type-safe printf in ML. It is
written in CPS and uses an accumulator parameter.
Incorporated in Standard ML of New Jersey.

◮ Hinze [JFP 2003] solved the same problem in Haskell using
type classes.

The implementation of shift/reset:

◮ shift/reset can be implemented using call/cc with a mutable
cell [Filinski, POPL 1994].

◮ Direct implementation of shift/reset for Scheme48 by
Gasbichler and Sperber [ICFP 2002].

◮ Kiselyov implements shift/reset for OCaml and Haskell [2007].
They support answer type modification and polymorphism,
and thus can execute direct-style printf program.



Summary

◮ Introduction to shift/reset using times and sprintf.

◮ Exact correspondence between CPS programs and direct-style
programs with shift/reset. With shift/reset, we obtain the
power of CPS without converting the program into CPS.

Q: Are shift/reset necessary if we can always simulate them by
writing programs in CPS?

◮ Yes. Long time ago when higher-order functions are
introduced, people must have argued that they are
unnecessary because we can always write a program without
using higher-order functions.

◮ Now, we know higher-order functions are useful. They provide
us with a more abstract view.

◮ Likewise, control operators such as shift/reset provide us with
higher level of abstraction.

I warmly invite you to the world of delimited continuations!


	Title
	Outline
	Times: DS 1
	Times: DS 2
	Times: DS 3
	Times: DS + Exception
	Times: CPS 1
	Times: CPS 2
	Times: CPS 3
	Times: DS + shift/reset
	Printf
	Observation
	Printf: CPS 1, lit
	Printf: CPS 2, ++
	Printf: CPS 3, %
	Printf: CPS 4, % 2
	Printf: CPS 5, Summary
	Printf: DS + shift/reset
	Printf: DS, example
	Related Work
	Summary

