
Toward Introducing Binding-Time Analysis to MetaOCaml

Kenichi Asai ∗

Ochanomizu University, Japan
asai@is.ocha.ac.jp

Abstract
This paper relates 2-level λ-calculus and staged λ-calculus (re-
stricted to 2 stages) to obtain monovariant binding-time analysis
for λ-calculus that produces the output in the form of staging an-
notations. The relationship between the two λ-calculi provides us
with a precise and easy instruction on how to implement binding-
time analysis to be incorporated in the staged λ-calculus. It forms
a basis for introducing binding-time analysis to full-fledged staged
languages such as MetaOCaml.

Categories and Subject Descriptors F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages—Partial
evaluation; F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Lambda calculus and related systems

General Terms Languages

Keywords Partial evaluation, binding-time analysis, staging, 2-
level lambda-calculus, MetaOCaml

1. Introduction
Although partial evaluation [5] has been studied for a long time, it is
still difficult to use it in everyday programming and its application
has been limited. Two of the main reasons would be:

• it is said to be difficult for non-experts to control the behavior
of partial evaluation, and
• it is difficult to use the result of partial evaluation in the current

environment, because partial evaluation is a source-to-source
transformation.

To resolve these problems, staged programming is introduced. See
[9] for nice introduction and reference therein. By manually adding
staging annotations, one can precisely control how code is gener-
ated. One can even run the resulting code in the current environ-
ment, achieving runtime code generation. As the staged program-
ming becomes popular, partly due to its ease of use, a full-fledged
language like MetaOCaml is maintained [6] and widely used.

However, staged programming does not necessarily inherit all
the benefit of partial evaluation. While offline partial evaluation

∗ This work was partly supported by JSPS Grant-in-Aid for Scientific Re-
search (C) 25280020.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PEPM ’16, January 18-19, 2016, St. Petersburg, FL, USA.
Copyright c© 2016 ACM 978-1-4503-4097-7/16/01. . . $15.00.
http://dx.doi.org/10.1145/2847538.2847547

typically incorporates binding-time analysis to stage programs au-
tomatically, in staged programming, one always has to stage pro-
grams manually. Although sophisticated code generation would re-
quire careful manual annotations, simple code generation would
not require manual intervention but automatic means would suffice.
Furthermore, there are situations where one cannot stage manually:
when one wants to stage a program that is generated at runtime [1].

The goal of our project is to introduce binding-time analysis
to MetaOCaml, so that simple staging can be done automatically.
Toward this goal, this paper makes the following contributions:

• We relate (in Section 5) the 2-level λ-calculus (Section 2) and
the staged λ-calculus (restricted to 2 stages, Section 3) via an
intermediate staged 2-level λ-calculus (Section 4). It enables
us to obtain the result of binding-time analysis as a staged
term. In contrast to the previous work [7, 8], it does not require
backtracking or complex constraint solving.
• As a proof of concept, we have implemented (in Section 6)

the binding-time analysis (for λ-calculus terms) in MetaOCaml
with lifting (Section 7). An example execution is found in
Section 8. It shows that incorporating (monovariant) binding-
time analysis to MetaOCaml is not very difficult.

The proofs not shown in the paper are available in the auxiliary
material (Section A).

2. 2-level λ-calculus
The input language we consider is a simply-typed λ-calculus with
integers as shown in Figure 1. We assume that input terms are
already type-checked according to the standard typing rules, also
shown in Figure 1.

Given a raw term in the simply-typed λ-calculus, binding-time
analysis transforms it into a term in the 2-level λ-calculus [3].
We use the multi-level formulation [2] restricted to 2 levels. See
Figure 2. In the 2-level λ-calculus, types and terms are annotated1

with binding times. Since we consider only two stages in this paper,
the binding times are either 0 (static) or 1 (dynamic). Binding times
are attached to all the sub parts of types and terms. For example,
t1

b1 →b t2
b2 represents a function type at stage b, whose argument

type is t1 at stage b1 and result type is t2 at stage b2. We say b is the
toplevel binding time of t1b1 →b t2

b2 or simply the binding time
of t1b1 →b t2

b2 . When the toplevel binding time is 0, we say the
type is static, and otherwise dynamic. Not all the combinations of
b, b1, and b2 are meaningful. We require that if the function type
itself is dynamic, its argument and result types be also dynamic.
This requirement is enforced by the well-formedness condition on
types shown in Figure 2.

Binding times are attached to terms in a similar way. We call
each b in the production rule for annotated terms in Figure 2 the

1 In this paper, we use the verb ‘annotate’ for adding binding times to terms
or types, not for adding staging annotations (〈.〉 and˜).

raw types: t := int | t1 → t2
raw terms: e := i | x | λx. e1 | e1 @ e2
typing rules:

Γ ` i : int
(TInt1)

Γ, x : t2 ` e1 : t1

Γ ` λx. e1 : t2 → t1
(TLam1)

Γ(x) = t

Γ ` x : t
(TVar1)

Γ ` e1 : t2 → t1 Γ ` e2 : t2
Γ ` e1 @ e2 : t1

(TApp1)

Figure 1. Simply-typed λ-calculus

(toplevel) binding time of the corresponding term. When it is 0, the
term is static, otherwise dynamic. Typing rules for annotated terms
are also shown in Figure 2. Static and dynamic integers have static
and dynamic integer types, respectively. We will discuss lifting of
base-type values in Section 7.

A variable is static (dynamic) when it is bound by a static
(dynamic, resp.) abstraction. To maintain when a variable is bound,
we annotate each variable in the type environment with its binding
time. The binding time of a variable indicates whether the variable
can be dereferenced at specialization time: if it is dynamic, the
variable is a piece of code carrying no value; if it is static, the
variable carries either a static or dynamic value. The type of a
variable has the information on the binding time of the carried
value. When a variable is dynamic, its type is always dynamic.
When a variable is static, its type can be either static or dynamic.
We will later see that whenever Γ is well-formed (to be defined
soon), we have b ≤ b1 in TVar2. It is important to observe that
the binding time of a variable and the binding time of its type
can be different. The same holds for applications. For integers and
abstractions, they are always the same.

A static abstraction can receive either a static value or a dynamic
value and return either a static value or a dynamic value. The
premise t2b2 wft assures that the newly-introduced binding times
of the argument type (which can be a function type) are properly
maintained. A dynamic abstraction, on the other hand, receives
a dynamic value and returns a dynamic value. This constraint is
expressed as the two premises, b ≤ b1 and b ≤ b2.

Finally, an application is static (dynamic) when the type of the
function part is static (dynamic, resp.). In other words, the applica-
tion is static when it can be reduced. Note that the binding time of
an application b and the binding time of the result of the application
b1 are different. Even if the whole application e1b

′
@b e2

b′2 can be
reduced (b = 0), the result of the application (of type t1b1) can
be dynamic (b1 = 1), if the function part returns a dynamic value.
Likewise, even if the type t2b2 →b t1

b1 of the function part e1b
′

is dynamic (b = 1), it does not mean that e1b
′

is dynamic, because
e1 can be a static application that returns a dynamic value. The dis-
tinction between the binding time of a term and the binding time of
its type is the important step toward bridging the gap between the
2-level λ-calculus and the staged λ-calculus to be introduced in the
next section.

In the 2-level λ-calculus, we maintain the following well-
formed condition for type environments.

DEFINITION 1. A type environment Γ is well-formed if, for all xb

in the domain of Γ, if Γ(xb) = tb
′
, then b ≤ b′ and tb

′
wft.

We can easily show that types that appear in a derivation of the
2-level λ-calculus are always well formed.

PROPOSITION 2. Assume that Γ is a well-formed environment. If
Γ ` eb

′
: tb, then tb wft.

binding times: b := 0 | 1
annotated types: tb := intb | t1b1 →b t2

b2

annotated terms: eb := ib | xb | λbx. e1
b1 | e1b1 @b e2

b2

well-formed types:

intb wft

t1
b1 wft t2

b2 wft b ≤ b1 b ≤ b2
(t1

b1 →b t2
b2)wft

typing rules:

Γ ` ib : intb
(TInt2)

Γ(xb) = t1
b1

Γ ` xb : t1
b1

(TVar2)

Γ, xb : t2
b2 ` e1b

′
1 : t1

b1 t2
b2 wft b ≤ b1 b ≤ b2

Γ ` λbx. e1
b′1 : t2

b2 →b t1
b1

(TLam2)

Γ ` e1b
′

: t2
b2 →b t1

b1 Γ ` e2b
′
2 : t2

b2

Γ ` e1b
′
@b e2

b′2 : t1
b1

(TApp2)

Figure 2. 2-level λ-calculus (0: static, 1: dynamic)

Given a well-typed term (with its typing derivation) in the
simply-typed λ-calculus, the task of binding-time analysis is to
transform it into a 2-level λ-calculus term by annotating the term
and its type with binding times. Although the typing rules for the
2-level λ-calculus are not strictly syntax directed because we have
effectively two rules (for the binding times, 0 and 1) for each con-
struct, annotating binding times to a term and its type is actually
easy. There is an efficient such algorithm [4], which can be further
simplified in case the input term is already well typed. Since we
want to obtain a term as static as possible, we first assume that all
the binding times are 0. The typing derivation for the simply-typed
λ-calculus then becomes a valid typing derivation for the 2-level
λ-calculus, because all the well-formedness conditions are triv-
ially satisfied if all the binding times are 0. When we raise a certain
binding time to 1 (because of the initial binding-time division given
by the user), we propagate this information through binding-time
constraints: whenever a binding time b is raised to 1 and we have a
binding-time constraint b ≤ b1, we raise b1 to 1. We continue this
process until all the binding-time constraints are satisfied. To real-
ize this process, we maintain for each binding time a list of binding
times that have to be raised. The process is efficient. The number
of binding times is proportional to the size of types appearing in
judgements and type environments (since binding times of terms
can be easily inferred from them). Because each binding time is
raised at most once, the process will finish when all the binding
times are raised in the worst case. We do not need any backtracking
or complex constraint solving.

3. Staged λ-calculus
Given an annotated term in the 2-level λ-calculus, we want to
execute it in a staged language such as MetaOCaml. However, the
theory MetaOCaml is based on is not the 2-level λ-calculus but a
staged λ-calculus. To relate the two λ-calculi, we review in this
section the staged λ-calculus as presented in [8]. See Figure 3.

Terms in the staged λ-calculus consist of terms in the simply-
typed λ-calculus extended with code 〈e〉 and escape ˜e. The code
〈e〉 constructs a code value that represents e, without evaluating
e. Within 〈e〉, however, one can write ˜e, which is evaluated to a
code value and spliced in to the surrounding code where ˜e was
originally placed. In the 2-level λ-calculus terminology, 〈e〉 is a
dynamic term and˜e is a static term that produces a dynamic term.

staged types: t := int | t1 → t2 | 〈t1〉
staged terms: e := i | x | λx. e1 | e1 @ e2 | 〈e1〉 |˜e1
typing rules:

Γ `b i : int
(TInt3)

Γ(xb) = t

Γ `b x : t
(TVar3)

Γ, xb : t2 `b e1 : t1

Γ `b λx. e1 : t2 → t1
(TLam3)

Γ `b e1 : t2 → t1 Γ `b e2 : t2
Γ `b e1 @ e2 : t1

(TApp3)

Γ `1 e1 : t1
Γ `0 〈e1〉 : 〈t1〉

(TCod3)
Γ `0 e1 : 〈t1〉
Γ `1 ˜e1 : t1

(TEsc3)

Figure 3. Staged λ-calculus

Since the staged λ-calculus handles code as a first-class object, it
has a type for code objects: 〈t〉 represents a type of code of type t.
That is, when e has type t, 〈e〉 has type 〈t〉.

The typing rules in the staged λ-calculus have the form Γ `b
e : t, which reads: under a type environment Γ, a term e has type
t at stage b. The stage b in the judgement represents the context
in which the term e is placed: b = 0 means that e appears in the
static context (intuitively outside 〈·〉 or within escape), while b = 1
means that e appears in the dynamic context (within 〈·〉 without
being escaped).

The first four typing rules in Figure 3 are exactly the same as
those for the simply-typed λ-calculus in Figure 1: the stage b is
simply placed uniformly to all the judgements. It means that these
four rules apply uniformly for all stages. The stage changes when
the last two typing rules are used. The first rule TCod3 states that
to check 〈e1〉 has type 〈t1〉 at stage 0, we have to check that e1 has
type t1 at stage 1. Using the stage, we remember whether e1 is in
〈·〉 or not. When in 〈·〉 (i.e., at stage 1), we can splice in a static
term e1 using TEsc3. The spliced term e1 is type-checked at stage
0 and it must have a code type 〈t1〉 for some t1 so that it can be
spliced in to the surrounding code.

In the 2-level λ-calculus, the binding time of a term and the
binding time of its type can be different. In the staged λ-calculus,
only a stage b is maintained, which roughly corresponds to the
binding time of a term. The information on the binding time of
a type is recovered by the two additional rules, TCod3 and TEsc3.

4. Staged 2-level λ-calculus
To relate the 2-level λ-calculus and the staged λ-calculus, we in-
troduce in this section an intermediate λ-calculus, called staged 2-
level λ-calculus, that bridges the gap between the two. It is similar
to the 2-level λ-calculus, but keeps track of the stage b of each
judgement. The typing rules of the staged 2-level λ-calculus are
shown in Figure 4.

Since the stage roughly corresponds to the binding time of a
term, the first four rules are obtained from the rules for the 2-level
λ-calculus (Figure 2) by simply adding the binding time as a stage
to all the judgements: for each Γ ` eb : tb

′
in Figure 2, we have

Γ `b eb : tb
′

in Figure 4. This is not enough, however, because
in the premises of these rules, binding times of terms are different
from b. To adjust them, the staged 2-level λ-calculus includes two
additional rules, TCod4 and TEsc4, that change the stage without
changing the term and its type.

It is easy to see that we can always transform a derivation for
the staged 2-level λ-calculus back into the one for the 2-level λ-

typing rules:

Γ `b ib : intb
(TInt4)

Γ(xb) = t1
b1

Γ `b xb : t1
b1

(TVar4)

Γ, xb : t2
b2 `b e1b

′
1 : t1

b1 t2
b2 wft b ≤ b1 b ≤ b2

Γ `b λbx. e1
b′1 : t2

b2 →b t1
b1

(TLam4)

Γ `b e1b
′

: t2
b2 →b t1

b1 Γ `b e2b
′
2 : t2

b2

Γ `b e1b
′
@b e2

b′2 : t1
b1

(TApp4)

Γ `1 e1 : t1

Γ `0 e1 : t1
(TCod4)

Γ `0 e0 : t1

Γ `1 e0 : t1
(TEsc4)

Figure 4. Staged 2-level λ-calculus (Definitions for binding times,
annotated types and terms, and well-formed types are the same as
Figure 2.)

calculus. By simply removing the stage and collapsing TCod4 and
TEsc4, we obtain a derivation for the 2-level λ-calculus.

In the next theorem, we will see that the converse is also true:
given a derivation for the 2-level λ-calculus, we can construct a
derivation for the staged 2-level λ-calculus. Although TCod4 is
applicable only for dynamic terms and dynamic types and TEsc4
is applicable only for static terms and dynamic types, the theorem
states that they are enough to recover the derivation of the 2-level
λ-calculus.

THEOREM 3. Assume that Γ is a well-formed environment. If we
have Γ ` eb

′
: tb in the 2-level λ-calculus, then for all b′′ such that

b′′ ≤ b, we have Γ `b′′ eb
′

: tb in the staged 2-level λ-calculus.

Because the proof of this theorem forms an algorithm to convert
a 2-level λ-calculus term into a staged 2-level λ-calculus term, we
show the entire proof below. It is done by induction on the deriva-
tion of Γ ` eb

′
: tb. For each of the typing rules in Figure 2, we

show that the same derivation can be obtained by the corresponding
rule in Figure 4, using TCod4 and TEsc4 to adjust stages.

Proof (of THEOREM 3). By induction on the derivation of Γ `
eb

′
: tb.

(case TInt2) From assumption, we have:

Γ ` ib : intb
(TInt2)

If b = 0, we have:

Γ `0 i0 : int0
(TInt4)

If b = 1, we have:

Γ `1 i1 : int1
(TInt4)

and Γ `1 i1 : int1
(TInt4)

Γ `0 i1 : int1
(TCod4)

(case TVar2) From assumption, we have:

Γ(xb) = t1
b1

Γ ` xb : t1
b1

(TVar2)

If b1 = 0, we have b = 0 since b ≤ b1 from the well-formedness
of Γ. We then have:

Γ(x0) = t1
0

Γ `0 x0 : t1
0

(TVar4)

If b1 = 1, we need to consider two cases for b. When b = 1, we
have:

Γ(x1) = t1
1

Γ `1 x1 : t1
1

(TVar4)
and

Γ(x1) = t1
1

Γ `1 x1 : t1
1

(TVar4)

Γ `0 x1 : t1
1

(TCod4)

When b = 0, we have

Γ(x0) = t1
1

Γ `0 x0 : t1
1

(TVar4)
and

Γ(x0) = t1
1

Γ `0 x0 : t1
1

(TVar4)

Γ `1 x0 : t1
1

(TEsc4)

(case TLam2) From assumption, we have:

Γ, xb : t2
b2 ` e1b

′
1 : t1

b1 t2
b2 wft b ≤ b1 b ≤ b2

Γ ` λbx. e1
b′1 : t2

b2 →b t1
b1

(TLam2)

Because b ≤ b2 and t2b2 wft, we have that Γ, xb : t2
b2 is a well-

formed environment. From the induction hypothesis, for all b′′1 such
that b′′1 ≤ b1, we have Γ, xb : t2

b2 `b′′
1
e1

b′1 : t1
b1 . If b = 0, by

setting b′′1 = 0, we have b′′1 ≤ b1, and thus:

Γ, x0 : t2
b2 `0 e1b

′
1 : t1

b1 t2
b2 wft 0 ≤ b1 0 ≤ b2

Γ `0 λ0x. e1
b′1 : t2

b2 →0 t1
b1

(TLam4)

If b = 1, we know b1 = b2 = 1 from b ≤ b1 and b ≤ b2. By
setting b′′1 = 1, we have b′′1 ≤ b1 (since b1 = 1), and thus:

Γ, x1 : t2
1 `1 e1b

′
1 : t1

1 t2
1 wft 1 ≤ 1 1 ≤ 1

Γ `1 λ1x. e1
b′1 : t2

1 →1 t1
1

(TLam4)

and

Γ, x1 : t2
1 `1 e1b

′
1 : t1

1 t2
1 wft 1 ≤ 1 1 ≤ 1

Γ `1 λ1x. e1
b′1 : t2

1 →1 t1
1

(TLam4)

Γ `0 λ1x. e1
b′1 : t2

1 →1 t1
1

(TCod4)

(case TApp2) From assumption, we have:

Γ ` e1b
′

: t2
b2 →b t1

b1 Γ ` e2b
′
2 : t2

b2

Γ ` e1b
′
@b e2

b′2 : t1
b1

(TApp2)

From the induction hypotheses, we have:

• for all b′′ such that b′′ ≤ b, Γ `b′′ e1b
′

: t2
b2 →b t1

b1

• for all b′′2 such that b′′2 ≤ b2, Γ `b′′
2
e2

b′2 : t2
b2

From PROPOSITION 2, we have (t2
b2 →b t1

b1)wft, i.e., b ≤ b1
and b ≤ b2. If b1 = 0, we must have b = 0 (from b ≤ b1). In this
case, by setting b′′ = 0 and b′′2 = 0, we have b′′ ≤ b and b′′2 ≤ b2,
and thus:

Γ `0 e1b
′

: t2
b2 →0 t1

0 Γ `0 e2b
′
2 : t2

b2

Γ `0 e1b
′
@0 e2

b′2 : t1
0

(TApp4)

If b1 = 1, we need to consider two cases for b. When b = 1, we
have b2 = 1 from b ≤ b2. In this case, by setting b′′ = 1 and
b′′2 = 1, we have b′′ ≤ b and b′′2 ≤ b2, and thus:

Γ `1 e1b
′

: t2
1 →1 t1

1 Γ `1 e2b
′
2 : t2

1

Γ `1 e1b
′
@1 e2

b′2 : t1
1

(TApp4)

and

Γ `1 e1b
′

: t2
1 →1 t1

1 Γ `1 e2b
′
2 : t2

1

Γ `1 e1b
′
@1 e2

b′2 : t1
1

(TApp4)

Γ `0 e1b
′
@1 e2

b′2 : t1
1

(TCod4)

When b = 0, by setting b′′ = 0 and b′′2 = 0, we have b′′ ≤ b and
b′′2 ≤ b2, and thus:

Γ `0 e1b
′

: t2
b2 →0 t1

1 Γ `0 e2b
′
2 : t2

b2

Γ `0 e1b
′
@0 e2

b′2 : t1
1

(TApp4)

and

Γ `0 e1b
′

: t2
b2 →0 t1

1 Γ `0 e2b
′
2 : t2

b2

Γ `0 e1b
′
@0 e2

b′2 : t1
1

(TApp4)

Γ `1 e1b
′
@0 e2

b′2 : t1
1

(TEsc4)
2

5. Adding Staging Annotations
In the previous section, we saw that a derivation in the 2-level λ-
calculus can be converted to a derivation in the staged 2-level λ-
calculus. We now convert the latter into a derivation in the staged
λ-calculus. In other words, we introduce staging annotations (〈·〉
and˜).

We first relate annotated types and staged types. While an an-
notated type has its own stage information in its binding time, a
staged type is context sensitive: int is static if it appears alone but
int in 〈int〉 is dynamic. To relate the two kinds of types, we define
a conversion function Ab[·] from annotated types to staged types at
stage b.

Ab[int
b] = int

A0[int1] = 〈int〉
Ab[e1

b1 →b e2
b2] = Ab[e1

b1]→ Ab[e2
b2]

A0[e1
1 →1 e2

1] = 〈A1[e1
1]→ A1[e2

1]〉
When the binding time of a type is the same as the stage b, Ab[·]
converts the type homomorphically. When the type is more dy-
namic than the stage, 〈·〉 is introduced. Note that A1[·] is not de-
fined for static types; static types appear only at stage 0. We can
easily show the following proposition by case analysis on t1.

PROPOSITION 4. A0[t1] = 〈A1[t1]〉
The conversion function is naturally extended to type environ-

ments as follows:

A[xb
′

: tb, . . .] = xb
′

: Ab′ [t
b], . . .

For each variable at stage b′, we use Ab′ [·] to convert its type.
Now, we relate annotated terms and staged terms.

Ab[i
b] = i

Ab[x
b] = x

Ab[λ
bx. e1

b1] = λx.Ab[e1
b1]

Ab[e1
b1 @b e2

b2] = Ab[e1
b1] @Ab[e2

b2]

A0[e1] = 〈A1[e1]〉
A1[e0] = ˜A0[e0]

Similarly to the type conversion, Ab[·] simply removes binding
times from terms when binding times are equal to the current stage.
Otherwise, it introduces either 〈·〉 or˜.

We can now relate a derivation in the staged 2-level λ-calculus
and a derivation in the staged λ-calculus.

THEOREM 5. If we have Γ `b′′ eb
′

: tb in the staged 2-level λ-
calculus, then we have A[Γ] `b′′ Ab′′ [e

b′] : Ab′′ [t
b] in the staged

λ-calculus.

The proof goes by induction on the derivation of Γ `b′′ eb
′

: tb.
We show that there is one-to-one correspondence between the rules
in Figure 4 and the ones in Figure 3.

Γ `0 i : 0 ; i
x0 ∈ Γ

Γ `0 x : b; x

Γ, x0 `0 e1 : b1 ; e′1

Γ `0 λx. e1 : 0 ; λx. e′1

Γ `0 e1 : 0 ; e′1 Γ `0 e2 : b2 ; e′2

Γ `0 e1 @ e2 : b; e′1 @ e′2

Γ `0 i : 1 ; 〈i〉
x1 ∈ Γ

Γ `0 x : 1 ; 〈x〉
Γ, x1 `1 e1 : 1 ; e′1

Γ `0 λx. e1 : 1 ; 〈λx. e′1〉
Γ `1 e1 : 1 ; e′1 Γ `1 e2 : 1 ; e′2

Γ `0 e1 @ e2 : 1 ; 〈e′1 @ e′2〉

Γ `1 i : 1 ; i
x1 ∈ Γ

Γ `1 x : 1 ; x

Γ, x1 `1 e1 : 1 ; e′1

Γ `1 λx. e1 : 1 ; λx. e′1

Γ `1 e1 : 1 ; e′1 Γ `1 e2 : 1 ; e′2

Γ `1 e1 @ e2 : 1 ; e′1 @ e′2
x0 ∈ Γ

Γ `1 x : 1 ;˜x

Γ `0 e1 : 0 ; e′1 Γ `0 e2 : b2 ; e′2

Γ `1 e1 @ e2 : 1 ;˜(e′1 @ e′2)

Figure 5. Algorithm for adding staging annotations 〈·〉 and˜

Proof (of THEOREM 5). By induction on the derivation of Γ `b′′
eb

′
: tb. The first four cases proceed without surprise. We show

the TLam4 case below. For the last two cases, we show the TEsc4
case. The TCod4 case is similar.
(case TLam4) From assumption, we have:

Γ, xb : t2
b2 `b e1b

′
1 : t1

b1 t2
b2 wft b ≤ b1 b ≤ b2

Γ `b λbx. e1
b′1 : t2

b2 →b t1
b1

(TLam4)

Since Ab[λ
bx. e1

b′1] = λx.Ab[e1
b′1] and Ab[t2

b2 →b t1
b1] =

Ab[t2
b2]→ Ab[t1

b1], we obtain the conclusion using the induction
hypothesis by:

A[Γ], xb : Ab[t2
b2] `b Ab[e1

b′1] : Ab[t1
b1]

A[Γ] `b λx.Ab[e1
b′1] : Ab[t2

b2]→ Ab[t1
b1]

(TLam3)

(case TEsc4) From assumption, we have:

Γ `0 e0 : t1

Γ `1 e0 : t1
(TEsc4)

SinceA1[e0] = ˜A0[e0] from the definition andA0[t1] = 〈A1[t1]〉
from PROPOSITION 4, we obtain the conclusion using the induction
hypothesis by:

A[Γ] `0 A0[e0] : 〈A1[t1]〉
A[Γ] `1 ˜A0[e0] : A1[t1]

(TEsc3)
2

6. Implementation
By combining the two theorems, we can transform a term in the
2-level λ-calculus into a term in the staged λ-calculus. Since the
proof of THEOREM 5 states that there is one-to-one correspondence
between the staged 2-level λ-calculus and the staged λ-calculus,
the key to the transformation is THEOREM 3: its proof provides us
with a transformation algorithm. For example, the case for TApp2
in the proof of THEOREM 3 examines five different subcases. Three
of them use TApp4 only, but the other two additionally use TCod4
or TEsc4. By classifying them according to the stage and the
toplevel binding time of their type, we obtain a transformation
algorithm shown in Figure 5.

The judgement in Figure 5 has the form Γ `b′ e : b ; e′

which reads: under type environment Γ (holding stages of variables
only) and the current stage b′, a 2-level λ-calculus term e (ignoring
its binding time) whose type has the toplevel binding time b is
translated to a staged λ-calculus term e′. Note that b is the toplevel
binding time of the type of e, not the toplevel binding time of e
itself. Figure 5 is organized as follows. One column is used for each
syntactic construct of the 2-level λ-calculus. The top two lines are
for stage 0 and the bottom one or two lines are for stage 1.

Figure 5 is used as follows. Given a derivation Γ ` eb
′

: tb

in the 2-level λ-calculus, we select a rule Γ `b′′ e : b ; e′ in
Figure 5 for each step of the derivation using e and b′′, starting
with b′′ = 0. When there are two rules, we use other information
to disambiguate. When e = i, we use b to select one of the two
rules. The same for e = λx. e1. For e = x, we use the stage of
x maintained in Γ. For e = e1 @ e2, we use the binding time of
the type of e1. The algorithm is somewhat non-standard in that it
dispatches according to not only the type of the current term but
also the type of its subterm.

We have incorporated the binding-time analysis presented so
far in MetaOCaml as follows. We provide a single external func-
tion called stage of type (’a -> ’b -> ’c) code -> (’a ->
(’b -> ’c) code) code, which turns a given two-argument
function2 into a staged function whose first argument is static and
second dynamic. By running the staged function and passing a
static argument, we can obtain a specialized function with respect
to the static argument. An example execution is found in Section 8.

Since the function stage is provided as a standard function, its
code argument is type-checked by MetaOCaml before passed to
stage. Given a well-typed code, stage annotates it with binding
times (as attributes of internal typed AST introduced from OCaml
4.02) and performs binding-time analysis as outlined in Section 2.
It then removes binding times and adds staging annotations accord-
ing to Figure 5. As a final bit, it checks whether the binding time
of the first argument is inferred as static. If it’s not, it raises an er-
ror. Although the output in the staged λ-calculus is guaranteed to
be well typed (because the two theorems produce typing deriva-
tion), the first static argument can be classified as dynamic if it
appears in the dynamic context (i.e., if it is residualized in the fi-
nal result). In this case, the output term would have type (’a code
-> (’b -> ’c) code) code rather than (’a -> (’b -> ’c)
code) code.

The implementation is light-weight. Since staging annotations
of MetaOCaml are implemented as attributes, we do not have to
modify the structure of the internal typed AST. We only need to
maintain stages of variables in an environment, use attributes to
attach a binding time to each node of the AST, and replace the at-
tributes with staging annotations. The function stage is provided
as an external library function, like !. (run) in MetaOCaml. Re-
compilation of MetaOCaml itself is not required to incorporate
such external library functions [6].

7. Lifting
In addition to 〈·〉 and ˜ (and run), staged λ-calculus allows us to
use a static variable in a dynamic context, so-called cross-stage

2 We assume that the given function is a one-stage function. That is, ’a, ’b,
and ’c do not contain any code type.

persistence or CSP:

Γ(x0) = t

Γ `1 x : t
(TVar′3)

Using CSP, we can support lifting of base-type values by inserting
an identity function. We add the following rule for promoting the
binding time of integers:

b2 ≤ b1
Γ ` λ0a. a0 : intb2 →0 intb1

(TLift2)

(and similarly for TLift4 with stage 0). The case for b2 < b1 (i.e,
b2 = 0 and b1 = 1) can be translated to the staged λ-calculus as
follows:

Γ, a0 : int `1 a : int
(TVar′3)

Γ, a0 : int `0 〈a〉 : 〈int〉
(TCod3)

Γ `0 λa. 〈a〉 : int→ 〈int〉
(TLam3)

Whenever a term e has a base type, we can insert an identity func-
tion as in (λa. a) @ e. If lifting is required, binding-time analy-
sis turns the identity function to a staged one: λa. 〈a〉. Although
our current implementation asks programmers to insert the identity
function manually (because it does not currently modify the struc-
ture of the internal AST for ease of implementation), it should be
easy to automatically add it after the initial type checking.

Restricting lifting to base types precludes primitive operations
(such as arithmetic operations) from appearing in a dynamic con-
text. To support primitive operations, we assign a single binding
time to their types, assuming that primitive operations would permit
useful computation only when they are fully applied. For example,
+ is given a type intb →b intb →b intb. Thus, + is either completely
static or completely dynamic. The latter case effectively works as
CSP of primitive operations.

Lifting a static variable of higher type in general requires deeper
consideration. Suppose a static variable f is bound to an abstrac-
tion λx. e, as in (λf. e′) @ (λx. e). What should happen if f ap-
pears three times in e′, once applied to a static value, once ap-
plied to a dynamic value, and once residualized in the result? In the
standard monomorphic binding-time analysis, λx. e is classified as
completely dynamic, because it is residualized in the final result. In
a monomorphic binding-time analysis with CSP for higher types, it
seems we need to classify λx. e as a static function that receives a
dynamic argument for the first two uses of f and use CSP to resid-
ualize it. In other words, we need to keep track of the completely
dynamic case for CSP in addition to other standard cases. It appears
difficult to achieve it without considering more complex polymor-
phic binding-time analysis — future work.

8. Example
To stage a program, we apply stage to code of a two-argument
function whose first and second arguments we want to classify as
static and dynamic, respectively. The following example highlights
various aspects of the binding-time analysis presented in this pa-
per.3

let a = stage
.<fun s d -> (fun g -> g d) (fun c ->

(((+) c) ((fun a -> a) (((+) s) 3))))>. ;;
val a : (int -> (int -> int) code) code =
.<fun s -> .<fun d ->

.~((fun g -> g .< d >.)

3 In the result, we renamed variable names and adjusted spacing. In OCaml,
s + 3 is implemented more efficiently than ((+) s) 3. The current im-
plementation supports only the second form of application.

(fun c ->
.<((+) .~c) .~((fun a -> .< a >.)

(((+) s) 3)) >.)) >.>.

The outermost abstraction of the result is static whose body is
dynamic. Within the dynamic abstraction, the application is done
statically. When a dynamic variable d is used in a static context, it is
surrounded by 〈·〉. Conversely, when a static variable c is used in a
dynamic context, it is escaped. Within a static context, the addition
of s and 3 is done statically, whose result is lifted using the user-
supplied identity function.

By running it and applying it to a static argument, we obtain a
specialized version.

let b = !. a 2 ;;
val b : (int -> int) code =
.<fun d -> ((+) d) (* CSP a *) Obj.magic 5>.
!. b 1 ;;
- : int = 6

9. Related Work
The only work we are aware of on introducing binding-time analy-
sis to a staged language is done by Sheard and Linger. They formu-
lated binding-time analysis as a search problem for staging anno-
tations that satisfy a given type specification [8]. They later refor-
mulated it as constraint-based type analysis [7]. In contrast to their
approaches built on top of the staged λ-calculus, we start from sim-
ple binding-time analysis for the 2-level λ-calculus where the ‘best’
binding times can be easily found, thus avoiding need for search-
ing or complex constraint solving. On the other hand, they consider
multiple stages as well as polymorphism and polyvariance in the
same framework. We expect that our framework extends naturally
to multiple stages, but it needs to be confirmed. As for polymor-
phism and polyvariance, it is not at all clear if our approach scales
to support them; it is an interesting research topic for future work.

References
[1] Asai, K. “Compiling a Reflective Language using MetaOCaml,”

Proceedings of the 2014 International Conference on Generative
Programming: Concepts and Experiences (GPCE ’14), pp. 113–122
(September 2014).

[2] Glück, R., and J. Jørgensen “An Automatic Program Generator for
Multi-Level Specialization,” Lisp and Symbolic Computation, Vol. 10,
No. 2, pp. 113–158, Kluwer Academic Publishers (July 1997).

[3] Gomard, C. K. “A Self-Applicable Partial Evaluator for the Lambda
Calculus: Correctness and Pragmatics,” ACM Transactions on Program-
ming Languages and Systems, Vol. 14, No. 2, pp. 147–172 (April 1992).

[4] Henglein, F. “Efficient Type Inference for Higher-Order Binding-Time
Analysis,” In J. Hughes, editor, Functional Programming Languages
and Computer Architecture (LNCS 523), pp. 448–472 (August 1991).

[5] Jones, N. D., C. K. Gomard, and P. Sestoft Partial Evaluation and
Automatic Program Generation, New York: Prentice-Hall (1993).

[6] Kiselyov, O. “The Design and Implementation of BER MetaOCaml,
System Description,” In M. Codish, and E. Sumii, editors, Functional
and Logic Programming (LNCS 8475), pp. 86–102 (June 2014).

[7] Linger, N., and T. Sheard “Binding-Time Analysis for MetaML via
Type Inference and Constraint Solving,” In K. Jensen and A. Podelski,
editors, Tools and Algorithms for the Construction and Analysis of
Systems (LNCS 2988), pp. 266–279 (March 2004).

[8] Sheard, T., N. Linger “Search-Based Binding Time Analysis using
Type-Directed Pruning,” Proceedings of the Asian Symposium on
Partial Evaluation and Semantics-Based Program Manipulation (ASIA-
PEPM’02), pp. 20–31 (September 2002).

[9] Taha, W. “A Gentle Introduction to Multi-stage Programming,” In C.
Lengauer, D. Batory, C. Consel, and M. Odersky, editors, Domain-
Specific Program Generation (LNCS 3016), pp. 30–50 (2004).

A. Proofs
The appendix presents all the proofs omitted in the main content of
the paper.

PROPOSITION 2. Assume that Γ is a well-formed environment. If
Γ ` eb

′
: tb, then tb wft.

Proof. By induction on the derivation of Γ ` eb
′

: tb.
(case TInt2) From assumption, we have:

Γ ` ib : intb
(TInt2)

We have intb wft.
(case TVar2) From assumption, we have:

Γ(xb) = t1
b1

Γ ` xb : t1
b1

(TVar2)

Since Γ is well-formed, Γ(xb) is also well-formed. Thus, we have
t1

b1 wft.
(case TLam2) From assumption, we have:

Γ, xb : t2
b2 ` e1b

′
1 : t1

b1 t2
b2 wft b ≤ b1 b ≤ b2

Γ ` λbx. e1
b′1 : t2

b2 →b t1
b1

(TLam2)

Since we have b ≤ b2 and t2b2 wft, from the induction hypothesis,
we also have t1b1 wft. With b ≤ b2 and b ≤ b1, we have:

t2
b2 wft t1

b1 wft b ≤ b2 b ≤ b1
(t2

b2 →b t1
b1)wft

(case TApp2) From assumption, we have:

Γ ` e1b
′

: t2
b2 →b t1

b1 Γ ` e2b
′
2 : t2

b2

Γ ` e1b
′
@b e2

b′2 : t1
b1

(TApp2)

From the induction hypothesis for the first premise, we have:

t2
b2 wft t1

b1 wft b ≤ b2 b ≤ b1
(t2

b2 →b t1
b1)wft

Thus, we have t1b1 wft. 2

PROPOSITION 4. A0[t1] = 〈A1[t1]〉

Proof. By case analysis on t1.

(case t1 = int1)

A0[t1] = 〈int〉 = 〈A1[t1]〉.

(case t1 = e1
1 →1 e2

1 for some e11 and e21)

A0[t1] = 〈A1[e1
1]→1 A1[e2

1]〉 = 〈A1[t1]〉.

2

THEOREM 5. If we have Γ `b′′ eb
′

: tb in the staged 2-level λ-
calculus, then we have A[Γ] `b′′ Ab′′ [e

b′] : Ab′′ [t
b] in the staged

λ-calculus.

Proof. By induction on the derivation of Γ `b′′ eb
′

: tb.
(case TInt4) From assumption, we have:

Γ `b ib : intb
(TInt4)

Since Ab[i
b] = i and Ab[int

b] = int, we obtain the conclusion by:

A[Γ] `b i : int
(TInt3)

(case TVar4) From assumption, we have:

Γ(xb) = t1
b1

Γ `b xb : t1
b1

(TVar4)

Since Ab[x
b] = x and A[Γ](xb) = Ab[Γ(xb)] = Ab[t1

b1], we
obtain the conclusion by:

A[Γ](xb) = Ab[t1
b1]

A[Γ] `b x : Ab[t1
b1]

(TVar3)

(case TLam4) From assumption, we have:

Γ, xb : t2
b2 `b e1b

′
1 : t1

b1 t2
b2 wft b ≤ b1 b ≤ b2

Γ `b λbx. e1
b′1 : t2

b2 →b t1
b1

(TLam4)

Since Ab[λ
bx. e1

b′1] = λx.Ab[e1
b′1] and Ab[t2

b2 →b t1
b1] =

Ab[t2
b2]→ Ab[t1

b1], we obtain the conclusion using the induction
hypothesis by:

A[Γ], xb : Ab[t2
b2] `b Ab[e1

b′1] : Ab[t1
b1]

A[Γ] `b λx.Ab[e1
b′1] : Ab[t2

b2]→ Ab[t1
b1]

(TLam3)

(case TApp4) From assumption, we have:

Γ `b e1b
′

: t2
b2 →b t1

b1 Γ `b e2b
′
2 : t2

b2

Γ `b e1b
′
@b e2

b′2 : t1
b1

(TApp4)

Since Ab[e1
b′ @b e2

b′2] = Ab[e1
b′] @Ab[e2

b′2] and
Ab[t2

b2 →b t1
b1] = Ab[t2

b2] → Ab[t1
b1], we obtain the conclu-

sion using the induction hypotheses by:

A[Γ] `b Ab[e1
b′] : Ab[t2

b2]→ Ab[t1
b1]

A[Γ] `b Ab[e2
b′2] : Ab[t2

b2]

A[Γ] `b Ab[e1
b′] @Ab[e2

b′2] : Ab[t1
b1]

(TApp3)

(case TCod4) From assumption, we have:

Γ `1 e1 : t1

Γ `0 e1 : t1
(TCod4)

Since A0[e1] = 〈A1[e1]〉 from the definition and A0[t1] =
〈A1[t1]〉 from PROPOSITION 4, we obtain the conclusion using
the induction hypothesis by:

A[Γ] `1 A1[e1] : A1[t1]

A[Γ] `0 〈A1[e1]〉 : 〈A1[t1]〉
(TCod3)

(case TEsc4) From assumption, we have:

Γ `0 e0 : t1

Γ `1 e0 : t1
(TEsc4)

SinceA1[e0] = ˜A0[e0] from the definition andA0[t1] = 〈A1[t1]〉
from PROPOSITION 4, we obtain the conclusion using the induction
hypothesis by:

A[Γ] `0 A0[e0] : 〈A1[t1]〉
A[Γ] `1 ˜A0[e0] : A1[t1]

(TEsc3)

2

