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Abstract
This paper presents a selective CPS transformation for a pro-

gram that uses control operators, shift and reset, introduced

by Danvy and Filinski. By selectively CPS-transforming a

program, we can execute a program with shift and reset in

a standard functional language without support for control

operators. We introduce a constraint-based type inference

system that annotates the parts that are captured by shift

and thus require CPS transformation. We show that the best

annotation does not exist in general, and present a constraint

solving algorithm that is reasonably efficient. The selective

CPS transformation is defined over annotated terms and

its correctness is proven. Finally, experimental results show

that selective CPS transformation does improve performance

compared to the standard CPS transformation.

CCS Concepts • Theory of computation → Control
primitives;

Keywords Selective CPS transformation, delimited contin-

uations, type system, functional languages
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1 Introduction
Control operators, shift and reset, as proposed by Danvy

and Filinski [7] enable us to manipulate control of a pro-

gram without transforming the program into continuation-

passing style (CPS). They have been extensively studied,

including type system [6], its extension to let-polymorphism

[2], axiomatization [15], and CPS hierarchy [4] to name a

few. They are also useful in many applications, such as non-

deterministic programming [7], representing monads [13],

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PEPM’18, January 8–9, 2018, Los Angeles, CA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5587-2/18/01. . . $15.00

https://doi.org/10.1145/3162069

let-insertion in partial evaluation [19, 28], and typed printf

[1, 5].

However, it is not easy to implement shift and reset in the

standard functional languages, especially in a typed setting.

Since the presence of shift and reset imposes restriction on

the type of the delimited context, a type system for shift and

reset needs to take the type of the delimited context (or the
answer type) into account. In fact, OchaCaml

1
[21], a direct

implementation of shift/reset on top of Caml Light, replaces

the type system of Caml Light completely with a new one

that incorporates answer types. Such a replacement becomes

less and less realistic for full-fledged typed functional lan-

guages like OCaml. As such, Kiselyov [17] implements the

Delimcc Library that implements control operators includ-

ing shift and reset as a library module independent of the

host OCaml system to ease maintenance. However, since he

does not modify the type system of OCaml, the so-called

answer type modification [2, 6] is not allowed, restricting

the applicability. One needs an additional manual trick [18]

to write a program with answer type modification.

In this paper, we take a different approach. We transform a

source program with shift and reset into a program without

via CPS transformation. However, we do not want to do it

all the time. When shift and reset are not used, we want to

keep the program in direct style for faster execution. To this

end, we transform the source program into CPS selectively:

we transform the parts that are captured by shift and leave

the other parts in direct style. Thus, a program that does not

use shift/reset is executed exactly the same as before, while a

program that uses shift/reset is selectively transformed into

CPS so that it can be executed in the standard functional

language without support for shift/reset. The selective CPS

transformation allows full answer type modification: the

source program is typed according to the type system with

answer types while the target program is typed according to

the standard type system.

To perform the selective CPS transformation, we need

to identify the parts that require CPS transformation. We

introduce a constraint-based type inference system similar

in spirit to constraint-based binding-time analysis [14]. In-

terestingly, we will show that there is no best annotation in

general with a concrete example. The contributions of the

paper are summarized as follows:

• We present a type system that assigns purity annota-

tions to indicate if CPS transformation is required. The

1 http://pllab.is.ocha.ac.jp/˜asai/OchaCaml/
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typability of our system is shown to be equivalent to

Asai and Kameyama’s system [2] but our type system

provides us with a finer classification of purity.

• We show that the best annotation does not exist in

general. Accordingly, we present a reasonably efficient

type inference system.

• We show a selective CPS transformation for annotated

terms and prove its correctness, i.e., the selective CPS

transformation preserves the meaning of a term.

• We show some experimental results to show that se-

lective CPS transformation does provide us with faster

execution than the standard CPS transformation.

Rompf, Maier, and Odersky [26] implement shift/reset in

Scala by a type-directed selective CPS transformation. Our

work is a reformulation of their work in the functional set-

ting. By introducing constraint-based type inference, we

avoid user annotations required in Scala. The effect of se-

lective CPS transformation can be big. Leijen [20] reports

that by employing selective CPS transformation (to compile

away algebraic effects in the language Koka), only less than

20% of the core library functions are required to be in CPS.

In the next section, we define types, terms, and typing

rules with purity annotations that we use throughout the

paper. Due to the space limitation, we did not include an in-

troduction to shift and reset. We refer the reader to a tutorial

[3]. In Section 3, we investigate the relationship between our

system and Asai and Kameyama’s system. Section 4 presents

a type inference algorithm with constraint solving on pu-

rity annotations. Selective CPS transformation is shown in

Section 5, whose correctness is proved in Section 6. Experi-

mental results are in Section 7. Section 8 mentions a use of

library functions. We discuss related work in Section 9 and

conclude in Section 10.

2 Annotated Types, Terms, Typing Rules
Types and terms are shown in Figure 1. We follow Asai and

Kameyama’s system [2] and extend it with purity annota-

tions.

An annotation is either p (pure) indicating that shift is

not used and thus CPS transformation is not required, or

i (impure) indicating that shift might have been used and

thus CPS transformation is required. We assume inequality

p < i between the two annotations, meaning that a pure

term can always be regarded as impure (by unnecessarily

transforming the pure term into CPS).

A type is either a type variable α , a base type b (such as

boolean and integer), or τ2 → τ1@cps[τ3,τ4,a].
2
The latter

is basically a function type from τ2 to τ1, but application of

this function causes the answer type to change from τ3 to
τ4. The purity annotation a in the type indicates if shift is

2
We borrowed the notation from Rompf, Maier, and Odersky [26] here. If

we ignore the purity annotation, it corresponds to τ2/τ3 → τ1/τ4 in Danvy

and Filinski’s notation [6].

a ::= p | i purity annotation

τ ::= α | b | τ2 → τ1@cps[τ3,τ4,a] monomorphic type

σ ::= τ | ∀α .σ polymorphic type

Γ ::= · | Γ,x : σ type environment

v ::= c | x | λax .A1 | fixa f .x .A1 value

e ::= v1 | A1 @
a A2 | S

ak .A1 | ⟨A1⟩ | term

letx = v1p inA2 | ifA1 thenA2 elseA3

A ::= ea annotated term

Figure 1. Types and terms

used during the application of this function. If a is p, the two
answer types, τ3 and τ4, must always be the same. Later, we

will enforce this constraint in the typing rules.

A term consists of the standard λ-calculus terms extended

with delimited control operators, shift and reset, together

with constants, fixed points, polymorphic let expressions

(with value restriction), and conditionals. Every subterm

is annotated with p or i. In addition, λax .A1, fixa f .x .A1,

A1@
a A2, and Sak .A1 carry additional annotation a. We

will explain its role with typing rules below.

Definition 2.1. A term e is syntactically pure if e is either a
value v or of the form ⟨A1⟩ for some A1.

Typing rules are shown in Figure 2. Judgement has the

form Γ ⊢ ea : τ1 @cps[τ2,τ3,a]
3
which reads: under the type

environment Γ, the annotated term ea has type τ1 whose
execution changes the answer type from τ2 to τ3. Since the
two occurrences of a in the judgement are always the same,

the purity annotation in a term is redundant: we can always

recover it from the typing derivation. However, we will keep

the annotation in a term, because selective CPS transforma-

tion is defined over annotated terms. Equivalently, we could

define selective CPS transformation over typing derivations.

The typing rules are a natural extension of those of Asai

and Kameyama [2] to express purity information. We explain

the extended parts below. Precise relationship to Asai and

Kameyama’s typing rules is discussed in Section 3. Syntac-

tically pure terms are given the annotation p, and the two

answer types are required to be the same. As for (λa2x . e1
a1 )p,

although the abstraction itself is pure, its body e1 can be im-

pure. When it is impure, a2 also becomes i from a1 ≤ a2, and
the type of the abstraction becomes (τ2 → τ1@cps[τ3,τ4,a2]).
Here, the two answer types, τ3 and τ4, can be different. When

e1 is pure, on the other hand, τ3 and τ4 must be the same.

This constraint is expressed by τ3 , τ4 ⇒ a1 = i. Even if the

body e1 is pure, we sometimes want to treat it as impure, as

in λx . x in the following term:

if true then λx . x else λx . Sk . x

3
If we ignore the purity annotation, it corresponds to Γ, τ2 ⊢ e : τ1, τ3 in

Danvy and Filinski’s notation [6].
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Γ ⊢ ea : τ1 @cps[τ2,τ3,a]

(x : σ ∈ Γ and σ ≻ τ1)

Γ ⊢ xp : τ1 @cps[τ2,τ2, p]
(Var)

(c is a constant of basic type b)

Γ ⊢ cp : b@cps[τ1,τ1, p]
(Const)

Γ,x : τ2 ⊢ e1
a1

: τ1 @cps[τ3,τ4,a1] a1 ≤ a2 τ3 , τ4 ⇒ a1 = i
Γ ⊢ (λa2x . e1

a1 )p : (τ2 → τ1@cps[τ3,τ4,a2])@cps[τ5,τ5, p]
(Fun)

Γ, f : (τ2 → τ1@cps[τ3,τ4,a1]),x : τ2 ⊢ e1
a1

: τ1 @cps[τ3,τ4,a1] a1 ≤ a2 τ3 , τ4 ⇒ a1 = i
Γ ⊢ (fixa2 f .x . e1a1 )

p
: (τ2 → τ1@cps[τ3,τ4,a2])@cps[τ5,τ5, p]

(Fix)

a1 ≤ a a2 ≤ a a3 ≤ a τ5 , τ6 ⇒ a1 = i τ4 , τ5 ⇒ a2 = i τ3 , τ4 ⇒ a3 = i
Γ ⊢ e1

a1
: (τ2 → τ1@cps[τ3,τ4,a3])@cps[τ5,τ6,a1] Γ ⊢ e2

a2
: τ2 @cps[τ4,τ5,a2]

Γ ⊢ (e1
a1
@

a3 e2
a2 )a : τ1 @cps[τ3,τ6,a]

(App)

Γ,k : ∀α .(τ3 → τ4@cps[α ,α ,a2]) ⊢ e1
a1

: τ1 @cps[τ1,τ2,a1] τ1 , τ2 ⇒ a1 = i

Γ ⊢ (Sa2k . e1
a1 )i : τ3 @cps[τ4,τ2, i]

(Shift)

Γ ⊢ e1
a1

: τ1 @cps[τ1,τ2,a1] τ1 , τ2 ⇒ a1 = i
Γ ⊢ ⟨e1

a1⟩p : τ2 @cps[τ3,τ3, p]
(Reset)

Γ ⊢ v1
p
: τ1 @cps[τ5,τ5, p] Γ,x : Gen(τ1; Γ) ⊢ e2a2 : τ2 @cps[τ3,τ4,a2] a2 ≤ a τ3 , τ4 ⇒ a2 = i

Γ ⊢ (letx = v1p in e2a2 )a : τ2 @cps[τ3,τ4,a]
(Let)

a1 ≤ a a2 ≤ a a3 ≤ a τ3 , τ4 ⇒ a1 = i τ2 , τ3 ⇒ a2 = i τ2 , τ3 ⇒ a3 = i
Γ ⊢ e1

a1
: bool@cps[τ3,τ4,a1] Γ ⊢ e2

a2
: τ1 @cps[τ2,τ3,a2] Γ ⊢ e3

a3
: τ1 @cps[τ2,τ3,a3]

Γ ⊢ (if e1a1 then e2a2 else e3a3 )a : τ1 @cps[τ2,τ4,a]
(If)

Figure 2. Typing rules

Such cases are accounted for by the inequality a1 < a2.
4
Even

if the body of abstraction is pure, it can be treated as impure

externally. The situation is similar in (Fix). The annotation

a1 represents the purity of the recursive function f in its

body e1, while a2 represents how the recursive function is

handled externally.

Typing rules for applications, conditionals, and let expres-

sions simply propagate annotations of the subterms to the

annotation of the whole term. If any of the subterms are im-

pure, so is the whole term. The inequality constraints allow

subterms to be pure, even if the whole term is impure. This

is how a pure term can be embedded into an impure context.

Finally, (Shift) is the only rule that enforces the impure

annotation i. Without this rule, we could satisfy all the con-

straints by assigning p to all the annotations and equating

all the adjacent answer types. In (Shift), the variable k has

the annotation a2 rather than p, although the captured con-

tinuation is always pure. This is because we sometimes want

to treat k as impure, just like λx . x in the above example.

4
The inequality in (If) does not account for this case. It can change only the

topmost annotation. Here, we need to change the annotation of the body of

λ-abstraction.

We can show various simple properties of the typing rules.

First, syntactically pure terms are answer-type polymorphic,

i.e., we can freely replace the two answer types.

Proposition 2.2. For any syntactically pure term e , if Γ ⊢

ea : τ1@cps[τ2,τ3,a], then a = p, τ2 = τ3, and Γ ⊢ ep :

τ1 @cps[τ ′
2
,τ ′

2
, p] for any type τ ′

2
.

Proof. By simple inspection of the typing rules for syntacti-

cally pure terms. □

We cannot extend this property to an arbitrary term e ,
because we do not have polymorphism for λ-bound variables.
For example, consider:

(λf . letv = ⟨f @0⟩ + 1 in f )@ (λx . x)

Although this term is pure (as shift is not used), the answer

type of the result f is fixed to integer, because of the first

use of f . To extend the above property to an arbitrary term,

as done by Thielecke [27], we need first-class polymorphism,

such as in System F.

The next proposition states that the two answer types

are equal for pure terms. This proposition ensures that the

typing rules are equipped with enough constraints of the

form τ1 , τ2 ⇒ a = i.
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Proposition 2.3. If Γ ⊢ ea : τ1@cps[τ2,τ3,a], then τ2 ,
τ3 ⇒ a = i. In particular, if Γ ⊢ ep : τ1@cps[τ2,τ3, p], then
τ2 = τ3.

Proof. By simple induction on the derivation of Γ ⊢ ea :

τ1 @cps[τ2,τ3,a]. □

Finally, non-syntactically pure terms can be made impure.

This proposition ensures that we have inserted enough in-

equality constraints in the typing rules, so that we can al-

ways coerce pure terms into impure ones, if the term is not

syntactically pure.

Proposition 2.4. For any term e that is not syntactically pure,
if Γ ⊢ ep : τ1 @cps[τ2,τ2, p], then Γ ⊢ e i : τ1 @cps[τ2,τ2, i].

Proof. By simple induction on the typing rules for terms that

are not syntactically pure. □

3 Relationship to Asai and Kameyama’s
System

In this section, we show that the typing rules in Figure 2 are

a conservative extension of Asai and Kameyama’s typing

rules [2]. To be more precise, a term is typable in our system

if and only if it is typable in Asai and Kameyama’s system,

restricted to value restriction for let expressions instead of

purity restriction.
5
This does not mean that our system is

useless. Asai and Kameyama’s system classifies only syntac-

tically pure terms as pure. Our system refines the notion of

purity so that it can classify more terms as pure.

Figure 3 defines types and terms for Asai and Kameyama’s

system. Types and terms are obtained by simply removing

all the purity annotations from our system, as formalized in

Figure 4. Typing rules for Asai and Kameyama’s system are

in Figure 5. Judgements are split into two kinds: pure ones

and impure ones. The pure judgement, Γ ⊢AKp e : τ1, is for a
syntactically pure term e and reads: under type environment

Γ, the syntactically pure term e has type τ1. The impure

judgement, Γ ⊢AK e : τ1@cps[τ2,τ3], is for an arbitrary

term e and reads: under type environment Γ, the term e has
type τ1 whose execution changes the answer type from τ2
to τ3. Typing rules are obtained from Figure 2 by removing

purity annotations and by removing the two answer types

for syntactically pure terms. To coerce a pure judgement into

an impure one, (ExpAK) is introduced.

Since pure judgements are used only for syntactically pure

terms in Asai and Kameyama’s system, and since pure judge-

ments can be turned into impure ones via (ExpAK), we can

always turn our typing derivation into Asai and Kameyama’s

system simply by forgetting all the purity annotations.

Theorem 3.1. (1) For any syntactically pure term e , if Γ ⊢

ep : τ1@cps[τ2,τ2, p], then |Γ | ⊢AKp |ep | : |τ1 | and hence
|Γ | ⊢AK |ep | : |τ1 |@cps[|τ2 |, |τ2 |] using (ExpAK). (2) For any
5
In this paper, we ignore purity restriction and use value restriction. It

should be easy to adjust our system to incorporate purity restriction.

τ ::= α | b | τ2 → τ1@cps[τ3,τ4] monomorphic type

σ ::= τ | ∀α .σ polymorphic type

Γ ::= · | Γ,x : σ type environment

v ::= c | x | λx . e1 | fix f .x . e1 value

e ::= v1 | e1 @ e2 | Sk . e1 | ⟨e1⟩ | term

letx = v1 in e2 | if e1 then e2 else e3

Figure 3. Types and terms for Asai and Kameyama’s system

[2]

|α | = α
|b | = b

|τ2 → τ1@cps[τ3,τ4,a]| = |τ2 | → |τ1 |@cps[|τ3 |, |τ4 |]
|∀α .σ | = ∀α .|σ |

|·| = ·

|Γ,x : σ | = |Γ |,x : |σ |

|xa | = x
|ca | = c

|(λa2x . e1
a1 )a | = λx . |e1

a1 |

|(fixa2 f .x . e1a1 )
a
| = fix f .x . |e1a1 |

|(e1
a1
@

a3 e2
a2 )a | = |e1

a1 |@ |e2
a2 |

|(Sa2k . e1
a1 )i | = Sk . |e1

a1 |

|⟨e1
a1⟩a | = ⟨|e1

a1 |⟩

|(letx = v1p in e2a2 )a | = letx = |v1
p | in |e2a2 |

|(if e1a1 then e2a2 else e3a3 )a | = if |e1a1 | then |e2a2 | else |e3a3 |

Figure 4. Annotation erasure

term e that is not syntactically pure, if Γ ⊢ ea : τ1 @cps[τ2,τ3,a],
then |Γ | ⊢AK |ea | : |τ1 |@cps[|τ2 |, |τ3 |].

Proof. By simple induction on the derivation of Γ ⊢ ea :

τ1 @cps[τ2,τ3,a]. □

To show the other direction, we need to recover appro-

priate purity annotations. We first define the attachment

of impure annotations to types and type environments as

follows:

α i = α
b i = b

(τ2 → τ1@cps[τ3,τ4])
i = τ2

i → τ1
i
@cps[τ3

i,τ4
i, i]

(∀α .σ )i = ∀α .σ i

(·)i = ·

(Γ,x : σ )i = Γi,x : σ i

We can then turn a typing derivation inAsai and Kameyama’s

system into ours. The recovered annotations are all impure,

except for syntactically pure terms which are fixed to be

pure.

Theorem 3.2. (1) If Γ ⊢AKp e : τ1, then for any type τ2,
we have Γi ⊢ ep : τ1

i
@cps[τ2

i,τ2
i, p] for some ep such that

e = |ep |. (2) If Γ ⊢AK e : τ1 @cps[τ2,τ2] and e is syntactically
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Γ ⊢AKp e : τ1
(x : σ ∈ Γ and σ ≻ τ1)

Γ ⊢AKp x : τ1
(VarAK)

(c is a constant of basic type b)

Γ ⊢AKp c : b
(ConstAK)

Γ,x : τ2 ⊢
AK e1 : τ1 @cps[τ3,τ4]

Γ ⊢AKp λx . e1 : (τ2 → τ1@cps[τ3,τ4])
(FunAK)

Γ, f : (τ2 → τ1@cps[τ3,τ4]),x : τ2 ⊢
AK e1 : τ1 @cps[τ3,τ4]

Γ ⊢AKp fix f .x . e1 : (τ2 → τ1@cps[τ3,τ4])
(FixAK)

Γ ⊢AK e1 : τ1 @cps[τ1,τ2]

Γ ⊢AKp ⟨e1⟩ : τ2
(ResetAK)

Γ ⊢AK e : τ1 @cps[τ2,τ3]

Γ ⊢AK e1 : (τ2 → τ1@cps[τ3,τ4])@cps[τ5,τ6] Γ ⊢AK e2 : τ2 @cps[τ4,τ5]

Γ ⊢AK e1 @ e2 : τ1 @cps[τ3,τ6]
(AppAK)

Γ,k : ∀α .(τ3 → τ4@cps[α ,α]) ⊢AK e1 : τ1 @cps[τ1,τ2]

Γ ⊢AK Sk . e1 : τ3 @cps[τ4,τ2]
(ShiftAK)

Γ ⊢AKp v1 : τ1 Γ,x : Gen(τ1; Γ) ⊢AK e2 : τ2 @cps[τ3,τ4]

Γ ⊢AK letx = v1 in e2 : τ2 @cps[τ3,τ4]
(LetAK)

Γ ⊢AKp e : τ1

Γ ⊢AK e : τ1 @cps[τ2,τ2]
(ExpAK)

Γ ⊢AK e1 : bool@cps[τ3,τ4] Γ ⊢AK e2 : τ1 @cps[τ2,τ3] Γ ⊢AK e3 : τ1 @cps[τ2,τ3]

Γ ⊢AK if e1 then e2 else e3 : τ1 @cps[τ2,τ4]
(IfAK)

Figure 5. Typing rules for Asai and Kameyama’s system [2]

pure, then we have Γi ⊢ ep : τ1
i
@cps[τ2

i,τ2
i, p] for some ep

such that e = |ep |. (3) If Γ ⊢AK e : τ1 @cps[τ2,τ3] and e is not
syntactically pure, then we have Γi ⊢ e i : τ1

i
@cps[τ2

i,τ3
i, i]

for some e i such that e = |e i |.

Proof. By simultaneous induction on the derivation of Γ ⊢AKp

e : τ1 and Γ ⊢AK e : τ1 @cps[τ2,τ3]. □

The above two theorems clarify the relationship between

our system and Asai and Kameyama’s system. Although

the set of well-typed terms are equal in both the systems,

our system can classify more terms as pure. In Asai and

Kameyama’s system, terms are classified as pure only when

they are syntactically pure. In particular, applications are

always impure. In our system, applications can be pure if the

function part, argument part, and the body of the function

part are all pure.

If we choose the most impure annotations, our system

coincides with Asai and Kameyama’s. What we want is an

annotation that is pure as much as possible.

4 Finding Better Annotations
Given a term without annotations, we try to attach purity

annotations to all the subterms that are as pure as possible.

Ideally, we want to find the best (or principal) annotation,

i.e., the one that is smaller than any other possible annota-

tions. However, it turns out that such an annotation does

not exist in general. In this section, we show how to find

annotations that are reasonably good without introducing

much computational costs. When better annotations could

have been found with additional efforts, we will mention it

explicitly along the development.

Given a term e , we first attach new annotation variables

to all the subterms of e . We then perform standard type

inference, collecting all the constraints on purity annota-

tions along the way. We then solve the collected constraints.

Constraints solving consists of four steps:

1. Transform constraints of the form τ1 , τ2 ⇒ a = i
into ones that do not mention types.

2. Solve trivial constraints.

3. Solve remaining constraints.

4. Assign p to all the remaining annotations.

Among the four steps, the first and third ones could throw

away better annotations. We describe each step in detail

below.

4.1 Removing Dependence on Types
We first transform the constraints of the form τ1 , τ2 ⇒ a =
i into either a = i or a1 , a2 ⇒ a = i by case analysis on τ1
and τ2, where a1 and a2 are purity annotations (not types).

If τ1 and τ2 are the same type (e.g., bool , bool ⇒ a = i),
the constraint is trivially satisfied and is removed. If τ1 and
τ2 differ, τ1 , τ2 ⇒ a = i is replaced by a = i. For example,

bool , int ⇒ a = i becomes a = i. For a function type:

τ12 → τ11@cps[τ13,τ14,a1] , τ22 → τ21@cps[τ23,τ24,a2]
⇒ a = i

44



PEPM’18, January 8–9, 2018, Los Angeles, CA, USA Kenichi Asai and Chihiro Uehara

Γ′ ⊢ дp : (bool → α1@cps[α3,α4,a3])@cps[α4,α4, p]
(Var)

Γ′ ⊢ truep : bool@cps[α4,α4, p]
(Const)

Γ′ ⊢ (дp @a3 truep)a1 : α1 @cps[α3,α4,a1]
(App)

Γ ⊢ (λa2д. (дp @a3 truep)a1 )p : ((bool → α1@cps[α3,α4,a3]) → α1@cps[α3,α4,a2])@cps[τ5,τ5, p]
(Fun)

Collected constraints: a3 ≤ a1, a1 ≤ a2, α3 , α4 ⇒ a1 = i, α3 , α4 ⇒ a3 = i.

Figure 6. Typing derivation for λд.д@ true, where Γ′ = Γ,д : (bool → α1@cps[α3,α4,a3])

we compare recursively. If any of the components differ, the

constraint becomes a = i. If all the components are the same

including purity annotations, the constraint is removed. If

all the components are the same but purity annotations are

different, we replace the constraint with a1 , a2 ⇒ a = i.
Note that more than one such constraint could be produced,

if component types are again function types and are the same

except for purity annotations.

So far, the transformation of constraints preserves the solu-

tion of the constraints: the possible annotations are the same

before and after the transformation. The situation becomes

different when one or both of the types are type variables.

Unless the two types are the same type variable (in which

case, the constraint is removed), it is difficult to perform the

transformation. To see the difficulty, consider the following

example:

let f = λд.д@ true in f @ (λx . x)

The typing derivation for λд.д@ true is shown in Figure 6

together with collected constraints. Since the type variables

α1, α3, and α4 do not appear in Γ, they will be generalized

when λд.д@ true is bound to f in the outer let expression.

At this point, consider the constraint α3 , α4 ⇒ a3 = i. It
is not clear if α3 and α4 are the same type or not. In the above

example, since f is applied to λx . x , we could equate α3 and
α4 so that a3 would become p. However, if f is applied to an

impure function, such as λx . Sk . x ,α3 andα4 are different and
we have to set a3 to i. In other words, the purity annotation

of the body of f depends on how it is used. This contradicts

to the way the standard type inference algorithm for let-

polymorphic languages goes. We want to determine the type

of f once and for all before examining how it is used later.

In this paper, we treat all the type variables different and

do not pursue the possibility of obtaining a better annotation

by instantiating type variables. In the above example, we

regard α3 , α4 and assign i to both a1 (and hence a2 via
a1 ≤ a2) and a3, making f completely impure.

With this design choice, we can separate the type infer-

ence into two phases: the standard type inference for let-

polymorphic languages and constraint solving. Since the

latter never instantiate type variables, we never have to redo

the type inference. On the other hand, this choice some-

times throw away better annotations if we employed more

thorough search.

C ∪ {a = i} ⇒ C[i/a]
C ∪ {a = p} ⇒ C[p/a]

C ∪ {p ≤ p} ⇒ C
C ∪ {p ≤ i} ⇒ C
C ∪ {p ≤ a2} ⇒ C
C ∪ {i ≤ p} ⇒ type error

C ∪ {i ≤ i} ⇒ C
C ∪ {i ≤ a2} ⇒ C ∪ {a2 = i}
C ∪ {a1 ≤ p} ⇒ C ∪ {a1 = p}
C ∪ {a1 ≤ i} ⇒ C
C ∪ {a1 ≤ a2} (non-trivial constraint)

C ∪ {a1 , a2 ⇒ p = i} ⇒ C ∪ {a1 ≤ a2,a2 ≤ a1}
C ∪ {a1 , a2 ⇒ i = i} ⇒ C
C ∪ {p , p ⇒ a = i} ⇒ C
C ∪ {p , i ⇒ a = i} ⇒ C ∪ {a = i}
C ∪ {p , a2 ⇒ a = i} ⇒ C ∪ {a2 , p ⇒ a = i}
C ∪ {i , p ⇒ a = i} ⇒ C ∪ {a = i}
C ∪ {i , i ⇒ a = i} ⇒ C
C ∪ {i , a2 ⇒ a = i} ⇒ C ∪ {a2 , i ⇒ a = i}
C ∪ {a1 , p ⇒ a = i} (non-trivial constraint)

C ∪ {a1 , i ⇒ a = i} (non-trivial constraint)

C ∪ {a1 , a2 ⇒ a = i} (non-trivial constraint)

Figure 7. Solving trivial constraints

4.2 Solving Trivial Constraints
Once all the constraints are collected and are transformed

into the form that does not mention types, we solve trivial

constraints. Let C be the set of constraints. We apply the

rules C ⇒ C ′
shown in Figure 7 repeatedly until no rules

are applicable.

The rules are self-explanatory. The notation C[a′/a] rep-
resents C where all the occurrence of a is replaced with a′.
The constraints marked as “non-trivial constraint” are not

handled at this point.

The constraint i ≤ p usually does not arise, since no syn-

tactic constructs (except for syntactically pure terms) enforce

an annotation to be p. However, it arises when we introduce

constants (such as library functions) that do enforce its ar-

gument to be pure. See Section 8.

It is easy to see that the transformation in Figure 7 is

terminating and preserves solutions.
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4.3 Solving Remaining Constraints
As a result of solving trivial constraints, we are left with the

following forms of constraints that are marked as non-trivial

constraints in Figure 7:

a1 , p ⇒ a = i a1 , i ⇒ a = i a1 , a2 ⇒ a = i
a1 ≤ a2

Among them, the first three constraints are not easy to solve.

If we expand the logical implication, they are expressed as

follows:

a1 = p ∨ a = i a1 = i ∨ a = i a1 = a2 ∨ a = i

It is not immediately clear which of the disjunction in the

constraints to take. We could employ computationally heavy

approaches such as an exhaustive search to find a solution.

However, it is still not clear which of the obtained solutions

to take, since it is known that the best solution does not

exist in general (see Section 4.5). Furthermore, greedy algo-

rithm to take p whenever possible could lead to unsatisfiable

constraints. For example, suppose we have the following

constraints:

a1 = p ∨ a = i a1 = i ∨ a2 = i a2 ≤ a1

If we take a1 = p in the first constraint, a2 becomes i from
the second constraint. Then, the third constraint becomes

unsatisfiable. Notice that the above three constraints can be

satisfied if we choose a = i, a1 = i, and a2 = p.
From these observations, we take the following safe and

computationally light approach: we satisfy the remaining

constraints of the form:

a1 , p ⇒ a = i a1 , i ⇒ a = i a1 , a2 ⇒ a = i

by a = i. In the above example, the constraints are satisfied

by choosing a = i, a1 = i, and a2 = i. With this design choice,

we could miss a better solution: in the above example, we

could assign p to a2. We could come up with an example term

that actually produces such constraints. However, the term

is quite artificial. It is a future work to investigate whether

employing computationally heavy approach here would pay

off in practice.

4.4 Assigning p to Remaining Annotations
At this point, we are left with constraints of the form a1 ≤ a2
without any further constraints. Since we want a solution

that is as pure as possible, we solve them by assigning p to

all the remaining annotations.

4.5 An Example Term That Has No Best Annotation
Assume we have addition on integers. Here is an example

term that does not have the best annotation:
6

λf . λд. ⟨f @1 + д@2⟩ = true

6
The example is due to Kanae Tsushima.

Given f and д, the function checks whether the result of

adding f @1 andд@2 in a delimited context would be equal

to true. Since addition always returns an integer, at least f
or д is impure and change the answer type from integer to

boolean. The types of f and д becomes as follows:

f : int → int@cps[τ1, bool,a1] τ1 , bool ⇒ a1 = i
д : int → int@cps[int,τ1,a2] int , τ1 ⇒ a2 = i

Our constraint solver would assign i to both a1 and a2. How-
ever, to type check the example term, we do not have to

assign i to both: one of them suffices. Depending on which

of the two arguments, f or д, is impure, we obtain two in-

comparable locally best solutions: a1 = i, a2 = p and a1 = p,
a2 = i.

This example also shows that our constraint solver does

not even produce a locally best solution. Both the two in-

comparable solutions are better than a1 = i, a2 = i.

5 Selective CPS Transformation
In this section, we show the selective CPS transformation

that transforms impure parts of a term e into CPS while pure
parts of e is kept as is in direct style. The transformation is

in one pass [8]: we perform the reduction of administrative

β-redexes at transformation time.

The (call-by-value, left-to-right) selective CPS transforma-

tion is shown in Figure 8. It receives an annotated term ea

and dispatches over the purity annotation a first and then

over e . The output of the selective CPS transformation is ex-

pressed in a two-level language. The overlined constructs are

static and are reduced at transformation time. The underlined

constructs are dynamic and represent syntactic constructors.
Since static constructs are reduced at transformation time,

the result of selective CPS transformation becomes a com-

pletely dynamic term. We assume that bound variables in

dynamic λ-abstraction, fixed points, and let expressions are

chosen fresh.

A pure term ep is transformed using [[ep]]p. If all the sub-
terms of ep are pure, [[ep]]p is an identity function: it returns

the input term ep with all the purity annotations removed

and all the syntactic constructors underlined. In particular,

the result is in direct style, not in CPS.

If a part of a term is annotated as impure, that part is

transformed into CPS. For example, (λix . e1
p)

p
is transformed

to λx . λk .k@ [[e1
p]]p. Since the λ-abstraction is annotated

as impure, the result receives a continuation k , which is

then applied to [[e1
p]]p. If the body e1 is also impure, as in

(λix . e1
i)
p
, the body is transformed into CPS, as we explain

next.

An impure term e i is transformed using [[e i]]i. The impure

transformation [[e i]]i additionally receives a static continua-

tion k as a transformation-time argument. By receiving the

continuation k as a transformation-time function rather than

a dynamic term, it becomes possible to reduce administrative

β-redexes at transformation time.
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[[cp]]p = c
[[xp]]p = x

[[(λpx . e1
p)p]]p = λx . [[e1

p]]p

[[(λix . e1
p)

p
]]p = λx . λk .k@ [[e1

p]]p

[[(λix . e1
i)
p
]]p = λx . λk . [[e1

i]]i @ (λv .k@v)

[[(fixp f .x . e1p)
p
]]p = fix f .x . [[e1p]]p

[[(fixi f .x . e1p)
p
]]p = λx . λk .k@ ((fix f .x . [[e1p]]p)@x)

[[(fixi f .x . e1i)
p
]]p = fix f .x . λk . [[e1i]]i @ (λv .k@v)

[[(e1
p
@

p e2
p)p]]p = [[e1

p]]p @ [[e2
p]]p

[[⟨e1
p⟩p]]p = [[e1

p]]p

[[⟨e1
i⟩
p
]]p = [[e1

i]]i @ (λv .v)
[[(letx = v1p in e2p)p]]p = letx = [[v1

p]]p in [[e2p]]p
[[(if e1p then e2p else e3p)p]]p = if [[e1p]]p then [[e2p]]p else [[e3p]]p

[[(e1
p
@

p e2
p)i]]i = λk . (λv .k@v)@ ([[e1

p]]p @ [[e2
p]]p)

[[(e1
p
@

p e2
i)
i
]]i = λk . (λv1. [[e2

i]]i @ (λv2. (λv .k@v)@ (v1 @v2)))@ [[e1
p]]p

[[(e1
i
@

p e2
p)

i
]]i = λk . [[e1

i]]i @ (λv1. (λv .k@v)@ (v1 @ [[e2
p]]p))

[[(e1
i
@

p e2
i)
i
]]i = λk . [[e1

i]]i @ (λv1. [[e2
i]]i @ (λv2. (λv .k@v)@ (v1 @v2)))

[[(e1
p
@

i e2
p)

i
]]i = λk . ([[e1

p]]p @ [[e2
p]]p)@ (λv .k@v)

[[(e1
p
@

i e2
i)
i
]]i = λk . (λv1. [[e2

i]]i @ (λv2. (v1 @v2)@ (λv .k@v)))@ [[e1
p]]p

[[(e1
i
@

i e2
p)

i
]]i = λk . [[e1

i]]i @ (λv1. (v1 @ [[e2
p]]p)@ (λv .k@v))

[[(e1
i
@

i e2
i)
i
]]i = λk . [[e1

i]]i @ (λv1. [[e2
i]]i @ (λv2. (v1 @v2)@ (λv .k@v)))

[[(Spx . e1
p)i]]i = λk . letx = λv .k@v in [[e1p]]p

[[(Spx . e1
i)
i
]]i = λk . letx = λv .k@v in [[e1i]]i @ (λv .v)

[[(S ix . e1
p)

i
]]i = λk . letx = λv . λk ′.k ′

@ (k@v) in [[e1p]]p
[[(S ix . e1

i)
i
]]i = λk . letx = λv . λk ′.k ′

@ (k@v) in [[e1i]]i @ (λv .v)

[[(letx = v1p in e2i)
i
]]i = λk . letx = [[v1

p]]p in [[e2i]]i @k

[[(if e1p then e2p else e3p)i]]i = λk . (λv .k@v)@ (if [[e1p]]p then [[e2p]]p else [[e3p]]p)

[[(if e1p then e2p else e3i)
i
]]i = λk . if [[e1p]]p then (λv .k@v)@ [[e2

p]]p else [[e3i]]i @k

[[(if e1p then e2i else e3p)
i
]]i = λk . if [[e1p]]p then [[e2i]]i @k else (λv .k@v)@ [[e3

p]]p

[[(if e1p then e2i else e3i)
i
]]i = λk . if [[e1p]]p then [[e2i]]i @k else [[e3i]]i @k

[[(if e1i then e2p else e3p)
i
]]i = λk . [[e1

i]]i @ (λv1. (λv .k@v)@ (ifv1 then [[e2p]]p else [[e3p]]p))

[[(if e1i then e2p else e3i)
i
]]i = λk . [[e1

i]]i @ (λv1. ifv1 then (λv .k@v)@ [[e2
p]]p else [[e3i]]i @k)

[[(if e1i then e2i else e3p)
i
]]i = λk . [[e1

i]]i @ (λv1. ifv1 then [[e2i]]i @k else (λv .k@v)@ [[e3
p]]p)

[[(if e1i then e2i else e3i)
i
]]i = λk . [[e1

i]]i @ (λv1. ifv1 then [[e2i]]i @k else [[e3i]]i @k)

Figure 8. Selective CPS transformation for annotated terms

Let us go back to the transformation of (λix . e1
i)
p
. Its CPS

transformation is λx . λk . [[e1
i]]i @ (λv .k@v). The body e1 is

transformed with a static continuation λv .k@v , the two-
level η-expansion of k . When applied to an argument v at

transformation time, it returns a dynamic application k@v .
This two-level η-expansion in the one-pass CPS transforma-

tion results in an administrative η-redex [8]. We can avoid

creation of administrative η-redexes by duplicating [[e i]]i into
two: one for the tail case and the other for non-tail case. See

[8] for details.

The selective CPS transformation of fix is similar in spirit,

but rather complex in the two impure cases. Both receive a

continuation k since they are impure externally. However,

they differ in if the generated recursive function receives

a continuation or not. When the body e1 is pure, the gen-
erated recursive function (fix f .x . [[e1p]]p) is in direct style

and is applied to the argument x , whose result is passed to

k . It is incorrect to receive a continuation inside fix as in

fix f .x . λk .k@ [[e1
p]]p, because then f in e1 would have to

receive a continuation. The latter would not satisfy preser-

vation of types (Theorem 5.1) shown later.
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E ::= [ ] | (E@a3 e2
a2 )a | (v1

p
@

a3 E)a | (ifE then e2a2 else e3a3 )a | ⟨E⟩p (ai ≤ a for all i) evaluation context

F ::= [ ] | (F @a3 e2
a2 )a | (v1

p
@

a3 F )a | (if F then e2a2 else e3a3 )a (ai ≤ a for all i) pure evaluation context

((λa3x . e1
a1 )p @a3 v2

p)
a { (e1[v2

p/x])a1 a1 ≤ a3 ≤ a
((fixa3 f .x . e1a1 )

p
@

a3 v2
p)
a { (e1[(fixa1 f .x . e1a1 )

p
/f ][v2

p/x])a1 a1 ≤ a3 ≤ a
⟨v1

p⟩p { v1
p

⟨F [(Sa2k . e1
a1 )i]⟩

p
{ ⟨(letk = (λa2x . ⟨F [xp]⟩p)p in e1a1 )

a1⟩
p

(letx = v1p in e2a2 )a2 { (e2[v1
p/x])a2 a2 ≤ a

(if truep then e2a2 else e3a3 )a { e2
a2 a2 ≤ a a3 ≤ a

(if falsep then e2a2 else e3a3 )
a { e3

a3 a2 ≤ a a3 ≤ a

e1
a1 { e ′

1

a′
1

([e1
a1 ]@a3 e2

a2 )a { ([e ′
1

a′
1 ]@a3 e2

a2 )
a

e2
a2 { e ′

2

a′
2

(v1
p
@

a3 [e2
a2 ])a { (v1

p
@

a3 [e ′
2

a′
2 ])

a

e1
a1 { e ′

1

a′
1

(if [e1a1 ] then e2a2 else e3a3 )a { (if [e ′
1

a′
1 ] then e2a2 else e3a3 )

a
e1

a1 { e ′
1

a′
1

⟨[e1
a1 ]⟩p { ⟨[e ′

1

a′
1 ]⟩

p


ai ≤ a (and a′i ≤ ai ) for all i

Figure 9. Reduction rules

When the body e1 is impure, on the other hand, the gener-

ated recursive function is in CPS. This is witnessed by observ-

ing the generated function fix f .x . λk . [[e1i]]i @ (λv .k@v)
receives a continuation inside fix. Similarly to the previous

case, it is incorrect to receive a continuation outside fix as
in λx . λk . ((fix f .x . [[e1i]]i @ (λv .k@v))@x) because then

f in e1 would be in direct style.

The other pure rules are straightforward. For ⟨e1
i⟩, we sup-

ply an empty continuation (λv .v) to transform the impure

body e1
i
.

Impure rules are split into many cases according to the

value of purity annotations of subterms. Basically, when we

transform an impure subterm e i, we perform the standard

CPS transformation, while when we transform a pure sub-

term ep, we construct a dynamic application (λv .k@v)@
[[ep]]p. It is incorrect to reduce this dynamic application at

transformation time as in k@ [[ep]]p, because k might place

its argument under dynamic abstraction, changing the order

of evaluation.

There are eight
7
impure rules for applications, each case

corresponding to the value of the three purity annotations.

Mostly, they follow the basic strategy described above. In

addition, we have to be careful not to change the order of

evaluation. In the second rule for application, (e1
p
@

p e2
i)
i
,

we construct a dynamic application of the form

(λv1. [[e2
i]]i @ (λv2. . . .))@ [[e1

p]]p

It is incorrect to perform the dynamic application at trans-

formation time and inline [[e1
p]]p, because e1

p
would then

be evaluated after e2
i
at runtime. The same for the case

(e1
p
@

i e2
i)
i
.

7
Since we have one pure rule, there are nine rules for applications in total.

The same for conditionals.

The rule for shift is split into four cases, according to the

purity of the captured continuation and the body of shift.

In all the cases, a dynamic let expression is used for the

captured continuation to retain the polymorphism of the

continuation’s answer type.

The rules for let expressions and conditionals are straight-

forward, following the basic strategy.

Define the CPS transformation of types as follows:

α∗ = α
b∗ = b

(τ2 → τ1@cps[τ3,τ4, p])∗ = τ2
∗ → τ1

∗

(τ2 → τ1@cps[τ3,τ4, i])∗ = τ2
∗ → (τ1

∗ → τ3
∗) → τ4

∗

We can then prove that the selective CPS transformation

preserves types.

Theorem 5.1 (preservation of types).
(1) If Γ ⊢ ep : τ1@cps[τ2,τ2, p], then Γ∗ ⊢ [[ep]]p : τ1

∗. (2) If
Γ ⊢ e i : τ1@cps[τ2,τ3, i], then Γ∗ ⊢ λk . [[e i]]i @ (λv .k@v) :
(τ1

∗ → τ2
∗) → τ3

∗.

Proof. By simultaneous induction on the derivation of Γ ⊢

ep : τ1 @cps[τ2,τ2, p] and Γ ⊢ e i : τ1 @cps[τ2,τ3, i] □

6 Correctness
In this section, we prove the correctness of our selective

CPS transformation. We first define the reduction rules for

the annotated terms. We then show that the selective CPS

transformation preserves β-equality: if e1
a1

reduces to e2
a2
,

then their selective CPS transformations are β-equal.
Evaluation contexts, pure evaluation contexts, and reduc-

tion rules are shown in Figure 9. They are all standard, follow-

ing Asai and Kameyama [2], except for the explicit purity

annotations. All the annotations come with necessary in-

equality constraints. Four inference rules are equivalent to
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the following one:

e1
a1 { e ′

1

a′
1

(E[e1
a1 ])a { (E[e ′

1

a′
1 ])

a

In Figure 9, we expand the definition of evaluation contexts,

because proofs of theorems become somewhat simpler.

In the reduction rules, annotations are mostly inherited

from the original term. However, there are a few cases when

the annotation becomes smaller.

Proposition 6.1. If e1a1 { e2
a2 , then a2 ≤ a1.

Proof. By inspecting all the reduction rules. Note that E[e1a1 ]
and E[e2

a2 ] have the same annotation when E , [ ]. □

The annotation becomes smaller in three cases. First, β-
reduction replaces the topmost annotation with the anno-

tation of the body of the function. Secondly, conditionals

replaces the topmost annotation with the annotation of one

of the branches. However, these cases simply inherit the an-

notation of the original term. The essential case is in the shift

case. Before shift is reduced, the hole of the pure evaluation

context F was filled with shift, which had annotation i. After
the reduction, it is filled with a variable x (as the continua-

tion capturing is done), which has annotation p. That is, the
annotation of the hole of F has decreased.

We can prove progress and preservation in a standard way

[2]. Even if a term is well typed, it can be a stuck term if shift

occurs in an evaluation context without being surrounded

by reset.

Theorem 6.2 (progress). (1) If Γ ⊢ e1
p
: τ1@cps[τ2,τ2, p],

then either e1p is a value, or e1p { e2
p for some e2p. (2)

If Γ ⊢ e1
i
: τ1@cps[τ2,τ3, i], then either e1i is of the form

F [(Sak . e2
a2 )i] for some F , a, k , and e2

a2 , or e1i { e2
a2 for

some e2a2 .

Proof. By simultaneous induction on the derivation of Γ ⊢

e1
p
: τ1 @cps[τ2,τ2, p] and Γ ⊢ e1

i
: τ1 @cps[τ2,τ3, i]. □

Preservation is divided into three cases, according to the

purity annotations of reduced terms: e1
p { e2

p
, e1

i { e2
p
,

or e1
i { e2

i
.

Theorem6.3 (preservation). (1) If Γ ⊢ e1
p
: τ1 @cps[τ2,τ2, p]

and e1
p { e2

p, then Γ ⊢ e2
p
: τ1@cps[τ2,τ2, p] (2) If Γ ⊢

e1
i
: τ1@cps[τ2,τ3, i] and e1

i { e2
p, then τ2 = τ3 and

Γ ⊢ e2
p
: τ1@cps[τ2,τ2, p] (3) If Γ ⊢ e1

i
: τ1@cps[τ2,τ3, i]

and e1i { e2
i, then Γ ⊢ e2

i
: τ1 @cps[τ2,τ3, i]

The proof is by induction on the derivation of e1
a1 { e2

a2
.

As usual, we need substitution lemma [29] for β , fix, and let

reductions. In addition, we need the following decomposition

lemma to prove the shift case.

Lemma 6.4 (decomposition of pure context).
If Γ ⊢ (F [e0

a0 ])a : τ1 @cps[τ2,τ3,a], then we have
1. Γ′ ⊢ e0

a0
: τ0 @cps[τ ,τ3,a0], and

2. Γ,x : τ0 ⊢ (F [x
p])a

′

: τ1 @cps[τ2,τ ,a
′], where x is fresh

for some Γ′, τ0, τ , and a′ such that Γ′ extends Γ and a′ ≤ a.

Proof. By induction on F . □

Finally, correctness of the selective CPS transformation is

stated as follows. Suppose that k is schematic [8].

Theorem 6.5 (correctness of selective CPS transformation).
(1) If Γ ⊢ e1

p
: τ1 @cps[τ2,τ2, p] and e1p { e2

p,
then [[e1

p]]p ∼ [[e2
p]]p.

(2) If Γ ⊢ e1
i
: τ1 @cps[τ2,τ2, i] and e1i { e2

p,
then [[e1

i]]i @k ∼ (λv .k@v)@ [[e2
p]]p.

(3) If Γ ⊢ e1
i
: τ1 @cps[τ2,τ3, i] and e1i { e2

i,
then [[e1

i]]i @k ∼ [[e2
i]]i @k .

Here,∼ denotes β-equality on underlined terms. CPS trans-

formation by Danvy and Filinski preserves reduction [8].

Namely, conclusion of the theorem is β-reduction rather

than β-equality. From the theoretical point of view, it is in-

teresting to pursue whether we can attain the preservation

of reduction — our future work. Alternatively, we could stay

with β-equality but try to simplify as much as possible, as

pursued by Davis, Meehan, and Shivers [11].

The proof of the correctness theorem is by induction on

the derivation of e1
a1 { e2

a2
. We show two interesting cases.

The first case is for:

e1
i { e ′

1

p

([e1
i]@p e2

p)
i
{ ([e ′

1

p]@p e2
p)

i

lhs = [[([e1
i]@p e2

p)
i
]]i @k

= [[e1
i]]i @ (λv1. (λv .k@v)@ (v1 @ [[e2

p]]p))

∼ (λv1. (λv .k@v)@ (v1 @ [[e2
p]]p))@ [[e ′

1

p]]p IH

∼ (λv .k@v)@ ([[e ′
1

p]]p @ [[e2
p]]p) βΩ

= [[([e ′
1

p]@p e2
p)

i
]]i @k

= rhs

From the third line to fourth line, we substitute [[e ′
1

p]]p intov1
(using βΩ [15]), which preserves β-equality since the first ex-
pression to be evaluated is [[e ′

1

p]]p in both lines. However, the

third line does not reduce to fourth line if e ′
1
is an application.

This is where we lose the preservation of β-reduction.
The second case is for shift:

⟨F [(Spk . e1
p)

i
]⟩

p
{ ⟨(letk = (λpx . ⟨F [xp]⟩p)p in e1p)

p
⟩
p

lhs = [[⟨F [(Spk . e1
p)i]⟩

p
]]p

= [[(F [(Spk . e1
p)i])

i
]]i @ (λv .v)

∼ [[(Spk . e1
p)i]]i @ (λx . [[F [xp]]]i @ (λv .v))

= letk = λx . [[F [xp]]]i @ (λv .v) in [[e1p]]p
=∗ [[⟨(letk = (λpx . ⟨F [xp]⟩p)p in e1p)

p
⟩
p
]]p

= rhs

From the second line to the third line, we use the following

lemma that captures the behavior of shift. Define [[xp]]i to

be λk .k@x .
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Lemma 6.6. [[(F [(Sa2k . e1a1 )i])
i
]]i @k ∼

[[(Sa2k . e1
a1 )i]]i @ (λx . [[F [xp]]]i @k)

Proof. By induction on F . □

7 Experiments
We implemented the type inferencer and selective CPS trans-

former presented in this paper in OCaml. To execute ex-

amples, we have extended the source language to include

standard constructs, such as pairs, lists, monomorphic let

expressions, and sequential execution. All the experiments

were performed on MacOSX 10.12.6 with 2.9 GHz Intel Core

i5 and 16GB memory. The OCaml version is 4.04.0.

In the examples, we use OchaCaml syntax: Sk . e is written
as shift (fun k -> e) and ⟨e⟩ as reset (fun () -> e).

7.1 Prefix
The first example is prefix, which produces a list of prefixes
of a given list. For example, prefix [1; 2; 3] produces

[[1]; [1; 2]; [1; 2; 3]].

let rec visit lst = match lst with
[] -> shift (fun k -> [])

| a :: rest ->
a :: shift (fun k ->
k [] :: reset (fun () -> k (visit rest)))

let prefix lst = reset (fun () -> visit lst)

The function prefix calls visit in an empty context. The

function visit traverses a given list. Whenever a new el-

ement is found, it captures the current continuation that

conses elements seen so far. Applying it to an empty list con-

structs the current prefix, while the recursive call produces

the rest of the prefixes.

When the above program is fully transformed into CPS,

we obtain the following program:
8

let rec visit lst c = match lst with
[] -> let k v k' = k' (c v) in []

| a :: rest ->
let k v k' = k' (c (a :: v)) in
k [] (fun x ->
x :: visit rest (fun x -> k x id))

let prefix lst k = k (visit lst id)

If we use the selective CPS transformation, we obtain:

let rec visit lst c = match lst with
[] -> let k v = c v in []

| a :: rest ->
let k v = c (a :: v) in
k [] :: visit rest (fun x -> k x)

let prefix lst = visit lst id

There are two differences. First, the captured continuations

remain in direct style and do not receive the continuation

8
Although we call the resulting program to be in CPS, it contains non-tail

calls and thus is not exactly in CPS. This is because the original program

contains shift/reset.

Table 1. Running time of prefix (in msec). (d) is missing

since shift and reset are not supported in OCaml.

(ms) ratio

OchaCaml direct style (a) 428

CPS (b) 492

Selective CPS (c) 352 0.72 (c/b)

OCaml direct style (d) -

CPS (e) 351

Selective CPS (f) 285 0.81 (f/e)

Table 2. Running time of queen 11 (in msec).

(ms) ratio

OchaCaml direct style (a) 873

CPS (b) 1152

Selective CPS (c) 757 0.66 (c/b)

Multicore OCaml effects (d) 449

CPS (e) 626

Selective CPS (f) 398 0.64 (f/e)

argument. Consequently, application of the captured contin-

uation is also in direct style. Note that it is difficult to handle

captured continuations as pure in the standard CPS trans-

formation, because we need to identify all the places where

the continuations are used. With selective CPS transforma-

tion, captured continuations are naturally kept in direct style

(unless they are placed in an impure context). Secondly, the

prefix function is identified as pure.

We evaluated the above three programs in both OchaCaml

and OCaml bytecode. We took prefixes of a list of 3000 ele-

ments. We ran the programs 10 times and took the average

time. The result is summarized in Table 1. Compared to the

standard CPS version, the running time of the selective CPS

version reduced to 72% in OchaCaml and 81% in OCaml.

This experiment shows that if continuations are heavily cap-

tured, we can expect certain amount of speedup by solely

transforming captured continuations into direct style.

We also listed running time of the direct-style version in

OchaCaml for reference. However, it is not directly compa-

rable to other versions, since their implementation strate-

gies are different. The direct-style version copies the stack

whenever continuations are captured, while the other two

represent continuations as explicit arguments.

7.2 n-Queen
The second example is the n-queen problem.

let rec choice num =
if num = 1 then 1
else shift (fun k -> k num; k (choice (num-1)))

The function choice returns a number from 1 to num non-

deterministically. After capturing the current continuation,
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it applies the continuation to each number from num down
to 1.

let queen n =
let rec loop (i, sol) =
if i = 0 then print_solution sol
else let j = choice n in

let sol2 = j :: sol in
if is_safe sol2
then loop (i - 1, sol2)
else ()

in loop (n, [])

Using choice, themain function queen non-deterministically

choose a value j, checks if it is safe to place a queen at j
(using is_safe, omitted), and if so, continue. Finally, if we

successfully reached to the end, the solution is printed (using

print_solution, omitted). The function loop is uncurried,

because CPS transformation of curried function results in

creation of CPS function for each argument, which would

incur too much overhead. For selective CPS transformation,

this problem does not arise because passing curried argu-

ments is pure except for the last one.

After selective CPS transformation, choice becomes:

let rec choice num c =
if num = 1 then c 1
else let k v = c v in

(k num; choice (num - 1) (fun x -> k x))

As before, the captured continuation is in direct style. In the

CPS version (omitted), k is transformed into CPS. Here is the

queen function:

let queen n =
let rec loop (i, sol) c =
if i = 0 then c (print_solution sol)
else choice n (fun j ->

let sol2 = j :: sol in
if is_safe sol2
then loop (i - 1, sol2) (fun x -> c x)
else c ())

in loop (n, []) id

We observe that is_safe, print_solution, and queen itself
are in direct style. In the CPS version (omitted), they are all

transformed into CPS, including the bodies of is_safe and

print_solution. It has significant impact on performance.

For this experiment, we used OCaml 4.02.2 with multi-

core support (Multicore OCaml [12]) instead of the standard

OCaml. Multicore OCaml supports effect handlers [24] that

can capture the current continuation similarly to shift. When

the captured continuation is used multiple times (e.g., for

backtracking), stack copying is used. For reference, we have

implemented n-queen problem in direct style using the effect

handlers in Multicore OCaml, too.

Table 2 summarizes the result of running 11-queen prob-

lem. (Numbers other than 11 had similar results.) The figures

are the average of ten runs. In both OchaCaml and Multicore

OCaml, the running time is reduced to around 66%, thanks

to the direct-style execution of captured continuations and

is_safe, both being in a loop and hence executed many

times. Again, we cannot directly compare the running time

of the direct-style version with other versions, since their

implementation strategies are different. However, in all cases,

we observe the direct-style versions perform better than the

CPS version, but worse than the selective CPS version.

8 Library Functions
Realistic languages have many library functions. In a lan-

guage with shift/reset that supports answer type modifica-

tion, we cannot directly link existing library functions, be-

cause they are typedwith the traditional type systemwithout

answer types. If we embed a program with shift/reset into a

standard functional language via selective CPS transforma-

tion, we are able to use existing library functions. However,

since impure functions are transformed into CPS, a problem

arises for higher-order library functions.

To use higher-order library functions, we need to annotate

them as completely pure. For example, List.map in OCaml

is given the following type:

(α → β@cps[γ1,γ1, p]) →
(α list → β list@cps[γ2,γ2, p])@cps[γ3,γ3, p]

where the first argument is explicitly constrained to a pure

function. When an impure function is given as a first argu-

ment, a type error occurs (the “type error” case in Figure 7).

To allow an impure function in such a case, one could prepare

for another version of List.map where the first argument

is classified as impure, as is done in Koka [20].

9 Related Work
Kim, Yi, and Danvy [16] use selective CPS transformation to

compile away exception handling and report that exception-

intensive programs can benefit from the selective CPS trans-

formation. Nielsen [23] presents a (two-pass) selective CPS

transformation for a calculus with call-with-current-contin-

uation and throw and shows its correctness via colon trans-

lation. Our work is a non-trivial extension of their work to

shift/reset where answer types play an important role.

Materzok and Biernacki [22] define a type system for

control operators, shift0 and reset0, and compile them into

simply-typed λ-calculus via selective CPS transformation.

They show a type inference algorithm that finds the princi-

pal type, but with unsolved constraints. We show that the

constraint solving is non-trivial for shift and reset case: some

terms do not have the best annotation.

Apart from supporting control operators in a host lan-

guage without them, Danvy and Hatcliff [9] identify strict

parts of a program in a lazy language and transform the

program into CPS by applying call-by-value or call-by-name

CPS transformation selectively. Danvy and Hatcliff [10] also
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show how to transform a direct-style interpreter into a natu-

ral CPS interpreter by identifying possibly non-terminating

parts and transforming those parts selectively. Reppy [25]

transforms designated function calls selectively into CPS to

improve efficiency of nested loops.

10 Conclusion
In this paper, we have presented a one-pass selective CPS

transformation that compiles away control operators, shift

and reset, into a standard functional language and proved its

correctness. We have not been able to attain preservation of

β-reductions, only preservation of β-equality. It is our future
work to investigate if it is possible to obtain preservation of

β-reduction by reformulating the transformation. We conjec-

ture that we need pure terms to be translated into A-normal

form. Another future work would be formalization using a

proof assistant. The selective CPS transformation dispatches

over purity annotations of subterms and has a lot of cases. It

is becoming unrealistic to check all the cases manually. We

have already started formalization in Agda and it spotted

some errors in the manual proof.
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