
Extracting a Call-by-Name Partial Evaluator
from a Proof of Termination

Kenichi Asai

Ochanomizu University

Tokyo, Japan

asai@is.ocha.ac.jp

Abstract
It is well known that the computational content of a termi-

nation proof of a calculus is an interpreter that computes the

result of an input term. Traditionally, such extraction has

been tried for a calculus with deterministic reduction rules,

producing the result as a value, i.e., in weak head normal

form where no redexes are reduced under lambda. In this

paper, we consider non-deterministic reduction rules where

any redexes can be reduced, even the ones under lambda,

and extract a partial evaluator, rather than an interpreter,

that produces the result in normal form. We formalize a call-

by-name, simply-typed, lambda calculus in the Agda proof

assistant and prove its termination using a logical predicate.

We observe that the extracted program can be regarded as

an online partial evaluator and present future perspectives

about how we can extend the framework to a call-by-value

calculus.

CCSConcepts •Mathematics of computing→ Lambda
calculus; • Theory of computation → Proof theory;

Keywords Partial evaluation, termination, logical relation,

de Bruijn index, Agda

ACM Reference Format:
Kenichi Asai. 2019. Extracting a Call-by-Name Partial Evaluator

from a Proof of Termination. In Proceedings of the 2019 ACM SIG-
PLAN Workshop on Partial Evaluation and Program Manipulation
(PEPM ’19), January 14–15, 2019, Cascais, Portugal. ACM, New York,

NY, USA, 7 pages. https://doi.org/10.1145/3294032.3294084

1 Introduction
A term e in a calculus is terminating, if there exists a value

v such that e reduces to v and v does not reduce further

(i.e., terminates). By the Curry-Howard correspondence, the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PEPM ’19, January 14–15, 2019, Cascais, Portugal
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6226-9/19/01. . . $15.00

https://doi.org/10.1145/3294032.3294084

computational content of this proof is to compute the value

v from the input term e . If we can show that all the terms in

a calculus are terminating, the computational content of the

proof is an interpreter that computes the result value from

any input term.

Related work. Biernacka, Danvy, and Støvring [7] prove

termination of both call-by-name and call-by-value lambda

calculi in a first-order minimal logic and extract interpreters

for both calculi from the termination proofs. Biernacka and

Biernacki [6] extend this approach to a calculus with an

abortive control operator call/cc and obtain interpreters writ-

ten in continuation-passing style (CPS). However, they all

handle weak normalization and do not reduce redexes under

lambda. Thus, the extracted programs are interpreters, rather

than a partial evaluator.

For strong normalization, Berger, Berghofer, Letouzey, and

Schwichitenberg [5] extract an interpreter from termination

proofs in Minlog, Coq, and Isabelle/HOL. However, the ex-

tracted program follows the normalization-by-evaluation

approach, which operates by induction on types and is closer

to type-directed partial evaluation [8].

This work. In this paper, we aim at obtaining a traditional

partial evaluator [10] that operates by induction on terms.

We do so by sticking to the original idea of regarding a termi-

nation proof as an evaluator: we only change the reduction

relation and observe that the proof of termination is a partial

evaluator.

We formalize the call-by-name lambda calculus in the

Agda proof assistant using de Bruijn index and renaming. We

then prove termination of the calculus for both deterministic

and non-deterministic reduction. For the former, we obtain

an interpreter. For the latter, we obtain a partial evaluator,

assuming that the calculus has the Church-Rosser property.

The resulting partial evaluator is essentially the standard

one that eagerly evaluates all redexes.

Although we obtain a partial evaluator, it is for a call-

by-name calculus. Ultimately, we want to obtain a partial

evaluator for a call-by-value calculus. However, it turns out

that it is not so straightforward. This paper sets the scene and

serves as the first step toward obtaining a partial evaluator

for a call-by-value calculus.

In the next section, we present the base calculus we work

on and show how we formalize it in Agda using renaming

61

https://doi.org/10.1145/3294032.3294084
https://doi.org/10.1145/3294032.3294084

PEPM ’19, January 14–15, 2019, Cascais, Portugal Kenichi Asai

τ := int | τ → τ types

x := z | sx variables

v := n | λ. e values

e := v | x | e@ e terms

ne := x | ne@ nf neutral terms

nf := ne | n | λ. nf normal forms

Figure 1. Types, variables, terms, and normal forms

and substitution. In Section 3, we review the termination

proof found in Pierce’s textbook [12] and show that the

computational content of the proof is an interpreter. In Sec-

tion 4, we extend the calculus to include non-deterministic

reduction rules and obtain a partial evaluator. In Section 5,

we conclude with future perspectives on obtaining a partial

evaluator for a call-by-value calculus.

The paper is accompanied by supplementary files that

contain the complete formalization and termination proof in

Agda, available at http://pllab.is.ocha.ac.jp/˜asai/
papers/pepm2019/.

2 Term Representation
The types and terms we consider in this paper are presented

in Figure 1. We employ de Bruijn indices [9] to represent

variables, using zero (z) and a successor function (s). A value

is either a natural number n (of base type int, to be distin-

guished from variables) or a lambda abstraction. Since our

language is call by name, variables are not values; they can

be bound to arbitrary computation including applications. A

term is either a value, a variable, or an application.

When we consider a partial evaluator, we will talk about

normal forms. A normal form is either a natural number, a

lambda abstraction whose body is also in normal form, or

a neutral term, which is a stuck term whose head position

is a variable and whose argument position is a normal form.

It is easy to see that the normal form in the standard call-

by-name lambda calculus with unrestricted β-reduction is

specified by this grammar.

In our Agda formalization, we represent all the terms in

a typeful manner, following Altenkirch and Reus [2]. Put

differently, we use intrinsically typed representation where

typing rules are incorporated into the definition of terms.

The typing rules are shown in Figure 2. We represent a type

environment Γ as a list of types, using OCaml notation where

[] and :: represent an empty type environment and the cons

operator, respectively. We will also use the OCaml list nota-

tion [τ1;τ2; . . .] for concrete examples of type environments.

The typing rules are standard. To obtain intuition on how

the typing rules for variables work, we show a judgement

for an example term λx . a@x @b with two free variables

a and b. Let Γ be a type environment [int→ int→ int; int]

Γ ⊢v x : τ

τ :: Γ ⊢v z : τ
(Zero)

Γ ⊢v x : τ
σ :: Γ ⊢v sx : τ

(Suc)

Γ ⊢ e : τ

Γ ⊢ n : int
(TNum)

τ2 :: Γ ⊢ e : τ1
Γ ⊢ λ. e : τ2 → τ1

(TAbs)

Γ ⊢v x : τ
Γ ⊢ x : τ

(TVar)
Γ ⊢ e1 : τ2 → τ1 Γ ⊢ e2 : τ2

Γ ⊢ e1 @ e2 : τ1
(TApp)

Γ ⊢ne nf : τ Γ ⊢v x : τ
Γ ⊢ne x : τ

(NeVar)

Γ ⊢ne ne : τ2 → τ1 Γ ⊢nf nf : τ2
Γ ⊢ne ne@ nf : τ1

(NeApp)

Γ ⊢nf nf : τ

Γ ⊢nf n : int
(NfNum)

τ2 :: Γ ⊢nf nf : τ1
Γ ⊢nf λ. nf : τ2 → τ1

(NfAbs)

Figure 2. Typing rules

keeping the types of a and b in this order.

int :: Γ ⊢ s z@ z : int→ int int :: Γ ⊢ s (s z) : int
int :: Γ ⊢ s z@ z@ s (s z) : int

(TApp)

Γ ⊢ λ. s z@ z@ s (s z) : int→ int
(TAbs)

In the top-right premise, we see that the second free variable

b (namely, s (s z)) has the second type int in Γ as follows

(expanding the definition of Γ):

int :: [] ⊢v z : int
(Zero)

int→ int→ int :: int :: [] ⊢v s z : int
(Suc)

int :: int→ int→ int :: int :: [] ⊢v s (s z) : int
(Suc)

int :: int→ int→ int :: int :: [] ⊢ s (s z) : int
(TVar)

Likewise, from the top-left premise, we see that x has type

int and a has type int→ int→ int, the first type in Γ.

2.1 Renaming
To define a reduction relation, we need to define substitution.

However, it is not quite straightforward to define substitution

using de Bruijn indices. Here, following Benton et al. [4], we

first define parallel renaming of variables before defining

substitution. It gives us a systematic view on renaming and

substitution. It is also known that this technique can be used

to define generic simulation and fusion lemmas [1].

A renaming ρ is a list of variables, where the i-th ele-

ment is a variable to be substituted for the i-th variable

of the term being renamed. For example, if we have ρ0 =
[z; s (s z); s (s (s z))], the following renaming happens:

z → z
s z → s (s z)

s (s z) → s (s (s z))

62

Extracting a Call-by-Name Partial Evaluator from a Proof of Termination PEPM ’19, January 14–15, 2019, Cascais, Portugal

∆ ⊢r ρ : Γ

∆ ⊢r [] : []
(Rmt)

∆ ⊢v x : τ ∆ ⊢r ρ : Γ

∆ ⊢r x :: ρ : τ :: Γ
(Rcons)

Figure 3. Renaming

If we apply this renaming to the body of the previous ex-

ample term s z@ z@ s (s z), we obtain s (s z)@ z@ s (s (s z)).
That is, we pushed away the two (originally free) variables

and made room for a new variable s z. It is used when we

put a term under a new binder. Suppose that we want to

put our example term λx . a@x @b under λy. . . . to obtain

λy. λx . a@x @b. The de Bruijn index of x is unchanged, but

those of a and b are pushed forward by one to account for

the new bound variable y. This is exactly what the above

renaming achieves.

An identity renaming ρid is a list of increasingly ordered

de Bruijn indices:

ρid = [z; s z; s (s z); . . .]

Renaming is formally defined in Figure 3. A renaming ρ
with the judgement ∆ ⊢r ρ : Γ renames a variable in Γ to a

variable in ∆. We write ρ (x) to denote the variable that x is

renamed to. We define wkr(ρ) and liftr(ρ) as follows:1

wkr([]) = []

wkr(x :: ρ) = sx :: wkr(ρ)

liftr(ρ) = z :: wkr(ρ)

Intuitively, wkr(ρ) adds one to (weakens by one) all the vari-

able indices while liftr(ρ) additionally allocates a new vari-

able at the front. The latter corresponds to applying ρ under

a new binder.

We can now define remaining on terms, which is also

written as an application of ρ, as follows:

ρ (n) = n
ρ (λ. e) = λ. (liftr(ρ)) (e)
ρ (x) = ρ (x)

ρ (e1 @ e2) = ρ (e1)@ ρ (e2)

where by abuse of notation, the left-hand side of the third

equation is an application of ρ to a term (which happens to

be a variable) while the right-hand side is an application of

ρ to a variable index. By inspection, we see that if we have

Γ ⊢ e : τ and ∆ ⊢r ρ : Γ, then we have ∆ ⊢ ρ (e) : τ . (See the
accompanying Agda code.)

2.2 Substitution
We are now ready to define substitution.Whereas a renaming

ρ is a list of variables, a substitution σ is a list of terms: the

1
We follow the formalization given by Abel found at: https://github.

com/andreasabel/strong-normalization/tree/master/agda. (Ac-

cessed on October 7, 2018.)

∆ ⊢s σ : Γ

∆ ⊢s [] : []
(Smt)

∆ ⊢ e : τ ∆ ⊢s σ : Γ
∆ ⊢s e :: σ : τ :: Γ

(Scons)

Figure 4. Substitution

i-th element of the list is a term to be substituted for the i-
th variable. (If our calculus was call by value, we would

represent σ as a list of values.) For example, if we have

σ0 = [λ. λ. s z; 3], the following substitution happens:

z → λ. λ. s z
s z → 3

An identity substitution σid is a list of increasingly ordered
variables:

σid = [z; s z; s (s z); . . .]

Although this definition appears to be identical to ρid, they
are different: ρid is a list of variables whereas σid is a list of
terms (which happen to be variables).

Substitution is formally defined in Figure 4. Similarly to

renaming, we define wks(σ) and lifts(σ) as follows:

wks([]) = []

wks(e :: σ) = (liftr(ρid)) (e) :: wks(σ)

lifts(ρ) = z :: wks(ρ)

In the definition of wks(e :: σ), liftr(ρid) adds one to all the

free variables in its argument e . Observe how renaming is

used here to define wks(e :: σ).
Substitution on terms is defined as follows:

σ (n) = n
σ (λ. e) = λ. (lifts(σ)) (e)
σ (x) = σ (x)

σ (e1 @ e2) = σ (e1)@σ (e2)

For example, if we apply σ0 defined above to our exam-

ple term λ. s z@ z@ s (s z), we obtain λ. (λ. λ. s z)@ z@3

as shown by the following derivation. Define

σ ′
0
= lifts(σ0)
= z :: wks(σ0)
= z :: (λ. λ. s z) :: 3 :: []

We then have:

σ0 (λ. s z@ z@ s (s z)) = λ. σ ′
0
(s z@ z@ s (s z))

= λ. (λ. λ. s z)@ z@3

63

PEPM ’19, January 14–15, 2019, Cascais, Portugal Kenichi Asai

(λ. e1)@ e2 { (e2 :: σid) (e1)
(β)

e1 { e ′
1

e1 @ e2 { e ′
1
@ e2

(EApp1)

Figure 5. Call-by-name reduction relation

2.3 Reduction Relation
We can now define the call-by-name reduction relation. See

Figure 5. In the (β) rule, e2 :: σid is the following substitution:

z → e2
s z → z

s (s z) → s z
s (s (s z)) → s (s z)

...

That is, it replaces the variable zero with e2 and decreases all
other variables by one, thus correctly realizing β-reduction.
Since the calculus is call by name, e2 is substituted without

being evaluated.

The reflexive, transitive closure of the relation · { · is
written as · {∗ ·.

Since the reduction is deterministic, we can show that the

reduct of a term is uniquely determined.

Proposition 2.1. If we have both e { e1 and e { e2, then
we have e1 = e2.

3 Termination Proof in the Textbook
In this section, we review the termination proof shown by

Pierce [12], slightly adjusted to the call-by-name setting. We

first define what it means for a term to be terminating.

Definition 3.1. A term e is terminating if there exists a

value v such that e {∗ v .

To prove termination, one first defines a logical predicate

by induction on the structure of types.

Definition 3.2. A logical predicate R on a closed term e of
type τ (i.e., we assume [] ⊢ e : τ) is defined by induction on

τ as follows:

1. Rint (e) iff e is terminating.

2. Rτ2→τ1 (e) iff e is terminating and for all e2 of type τ2
that satisfies Rτ2 (e2), we have Rτ1 (e@ e2).

An interesting point of the definition of R is that it not

only states that e is terminating, but also tells us that the

application of e to a (terminating) argument is terminating.

The latter makes the predicate strong enough to capture the

property of the static reduction of a term e .
We immediately see by a straightforward case analysis

that e is terminating if it satisfies R.

Proposition 3.3. If Rτ (e), then e is terminating.

The next step is to show that the predicate R is preserved

by both directions of reduction.

Proposition 3.4. Suppose [] ⊢ e1 : τ and e1 { e2.
1. If Rτ (e1), then Rτ (e2).
2. If Rτ (e2), then Rτ (e1).

We omit the simple proof and refer the reader to the text-

book [12]. However, we show a seemingly innocent propo-

sition that is needed to prove the above proposition, as it

plays an important role in the next section.

Proposition 3.5. Suppose [] ⊢ e1 : τ and e1 { e2.
1. If e1 is terminating, then e2 is terminating.
2. If e2 is terminating, then e1 is terminating.

The second part is easy to prove: if e2 is terminating with

a value v2, e1 is surely terminating because e1 { e2 {
∗ v2.

The first part is more subtle. Since e1 is terminating, we

have e1 {
∗ v1 for some v1. However, even if we have e1 {

e2, we do not know if e2 goes back to some term within

the reduction sequence of e1 {
∗ v1. This is where we use

uniqueness of reduction (Proposition 2.1): as we have both

e1 { e2 and e1 {
∗ v1, the second term in the reduction

sequence of e1 {
∗ v1 must be e2. Thus, we have e2 {

∗ v1,
finishing the proof.

We are now ready to prove the main lemma of the logical

predicate.

Lemma 3.6. Assume Γ ⊢ e : τ and [] ⊢ σ : Γ. If all the terms
in σ satisfy the predicate R with their respective types, then
we have Rτ (σ (e)).

The first premise says that e is a well-typed term having

free variables listed in Γ. The second premise says σ is a list

of closed terms that covers all the free variables of e . Thus,
after applying substitution, σ (e) is a closed term. As a whole,

the main lemma says if e is well typed, its closed instances

satisfy the logical predicate R.
The proof term eval(e,σ) of the lemma essentially be-

comes as follows:

eval(n,σ) = n
eval(λ. e,σ) = (λ. (lifts(σ)) (e), evlam(e,σ))
eval(x ,σ) = lookup(x ,σ)

eval(e1 @ e2,σ) = let (_, r1) = eval(e1,σ) in
let r2 = eval(e2,σ) in
r1 (σ (e2), r2)

evlam(e,σ) (e2, r2) = eval(e, e2 :: σ)

lookup(z, e :: σ) = e
lookup(sx , e :: σ) = lookup(x ,σ)

Given a term e and a substitution σ (serving as a runtime

environment), eval(e,σ) proves that σ (e) satisfies R by pro-

viding the value σ (e) evaluates to, together with a static

function to perform evaluation in the case e has a function
type.

64

Extracting a Call-by-Name Partial Evaluator from a Proof of Termination PEPM ’19, January 14–15, 2019, Cascais, Portugal

e2 { e ′
2

e1 @ e2 { e1 @ e ′
2

(EApp2)
e { e ′

λ. e { λ. e ′
(EFun)

Figure 6. Additional reduction relation to permit arbitrary

β-reduction

Let us closely look at the proof term. If e is a natural

number n, n itself is the value it evaluates to. If e is an ab-

straction λ. e , it returns a symbolic value [13] that consists
of a dynamic value representing the result of evaluation and

a static function that performs further computation. The

former is the evidence that λ. e terminates, while the latter is

the proof that λ. e is terminating if applied to a terminating

argument. The returned static function, evlam(e,σ), receives
an argument e2 and a proof r2 that e2 satisfies R, and proves

that the body e of the abstraction satisfies R in an extended

environment where the variable zero is replaced with the

argument. (To show that the right-hand eval(e, e2 :: σ) of
evlam(e,σ) (e2, r2) is actually what we want, we need to use

Proposition 3.4. We elide this part, because it is purely for

the proof and does not produce any computational content.

See the accompanying Agda code for details.)

If e is a variable x , it looks up the environment σ to extract

the corresponding term. Since all terms in σ satisfy R, it gives
the required proof for this case. Finally, if e is an applica-

tion e1 @ e2, we recurse on e1 to retrieve a static function r1
and passes the (unevaluated) argument σ (e2) to prove that

e1 @ e2 satisfies R.
It is a bit peculiar here that we need to recurse on e2, too,

to obtain the evidence that e2 satisfies R. In call-by-name

languages, we should not evaluate the argument e2. The
recursive call is justified, because it is done solely for the

purpose of the proof. If we divide the proof term into two,

one for computing the result and one for proving that R is

satisfied, the recursive call on e2 appears only in the latter.

As a whole, we successfully extracted a call-by-name in-

terpreter from a termination proof.

4 Termination Proof of Strong Reduction
The program we extracted in the previous section is an inter-

preter. It produces only weak-head normal forms and does

not reduce redexes under lambda. In this section, we turn

our attention to extracting a partial evaluator rather than

an interpreter. The basic idea is to replace the reduction re-

lation: rather than using a deterministic relation, we use a

relation that permits β-reduction at any place in a term, even

under lambda. By reducing all redexes, we would obtain a

normal form (rather than a weak head normal form), and

the extracted program of its termination proof would be a

partial evaluator.

Figure 6 shows the reduction relation we add to the orig-

inal reduction relation in Figure 5. We allow β-reduction

at argument position (regardless of the function position

is value or not) and under lambda. Because of the addition,

the reduction becomes non-deterministic: if both the func-

tion position and the argument position of an application

are β-redexes, we can use both (EApp1) and (EApp2). Thus,

uniqueness of reduction (Proposition 2.1) no longer holds.

The addition to the reduction relation also affects the

definition of termination. Since we want to reduce all β-
redexes, we say a term e is terminating only when it reduces

to a normal form, rather than a value.

Definition 4.1. A term e is terminating if there exists a

normal form nf such that e {∗ nf .

Reducing a term under lambda means we have to handle

open terms, i.e., reduction in the presence of free variables.

In the previous section, the relation R is defined for closed

terms only. In particular, the definition of R for a function

type considers only when a closed term is applied to a closed

argument. Here, we have to extend it to cope with open

terms.

Definition 4.2. A logical predicate R on an open term e
of type τ under Γ (i.e., we assume Γ ⊢ e : τ) is defined by

induction on τ as follows:

1. RΓ
int (e) iff e is terminating.

2. RΓ
τ2→τ1 (e) iff e is terminating and for all e2 of type τ2

under ∆ (i.e., ∆ ⊢ e2 : τ2) that satisfies R
∆
τ2 (e2), and for

all σ that renames variables from Γ to ∆ (i.e, ∆ ⊢r σ : Γ),
we have R∆

τ1 (σ (e)@ e2).

This definition is different from the one in the previous

section in two ways. First, the definition of termination is

changed. The new definition returns a normal form as a

proof term rather than a value. Secondly, in the definition of

R for a function type, the argument e2 does not have to be

typed under the original Γ, but under any ∆ which extends

Γ (with a renaming σ). In other words, R is now defined in

Kripke style. This flexibility is required when we evaluate

under lambda.

The rest of the story goes similarly to the previous sec-

tion, but with extra care on non-deterministic reduction and

renaming of variables. As in the previous section, R implies

termination.

Proposition 4.3. If RΓ
τ (e), then e is terminating.

To show that reduction preserves R, we need to show that

reduction preserves termination. However, due to the non-

deterministic reduction, the proof is not straightforward. In

particular, we have to assume Church-Rosser property. Let

· ∼ · be a reflective, symmetric, transitive closure of · { ·.

Postulate 4.4 (Church-Rosser). If e1 ∼ e2, there exists e such
that e1 {∗ e and e2 {∗ e .

It is possible to prove this theorem, as we all know it holds

for the call-by-name lambda calculus [3]. We did not prove

65

PEPM ’19, January 14–15, 2019, Cascais, Portugal Kenichi Asai

it, however, since it is already known to hold, is tedious,

and does not contribute to the computational content of the

proof. We thus accept it as is and go forward.

Given the Church-Rosser property, we can prove that

equality preserves termination.

Proposition 4.5. Suppose e1 ∼ e2. If e1 is terminating, then
e2 is terminating.

Since e1 is terminating, we have e1 {
∗ nf1 for some nor-

mal form nf1. From e1 ∼ e2 and e1 {
∗ nf1, we have e2 ∼ nf1.

From the Church-Rosser property, we have a term e such
that e2 {

∗ e and nf1 {∗ e . Since nf1 is a normal form, we

must have nf1 = e . Thus, we have e2 {
∗ nf1 as required.

From this proposition, we immediately obtain:

Proposition 4.6. Suppose Γ ⊢ e1 : τ and e1 { e2.
1. If e1 is terminating, then e2 is terminating.
2. If e2 is terminating, then e1 is terminating.

and the preservation of R by reduction:

Proposition 4.7. Suppose Γ ⊢ e1 : τ and e1 { e2.
1. If RΓ

τ (e1), then R
Γ
τ (e2).

2. If RΓ
τ (e2), then R

Γ
τ (e1).

We can now prove the main lemma of the logical predicate.

Lemma 4.8. Assume Γ ⊢ e : τ and ∆ ⊢ σ : Γ. If all the terms
in σ satisfy the predicate R under ∆ with their respective types,
then we have R∆

τ (σ (e)).

Like Lemma 3.6, the first premise says that e is a well-typed
term having free variables listed in Γ. Unlike Lemma 3.6, the

second premise says σ does not close all the free variables
of e; the free variables in ∆ remain after substitution. The

conclusion says that the resulting term σ (e) satisfies the
logical predicate R under ∆.
The proof term eval(e,σ) of the lemma essentially be-

comes as follows:

eval(n,σ) = n
eval(λ. e,σ) = let nf = eval(e, lifts(σ)) in

(λ. nf , evlam(e,σ))
eval(x ,σ) = lookup(x ,σ)

eval(e1 @ e2,σ) = let (_, r1) = eval(e1,σ) in
let r2 = eval(e2,σ) in
r1 (ρid,σ (e2), r2)

evlam(e,σ) (ρ, e2, r2) = eval(e, e2 :: map ρ σ)

The changes from the previous section are three-fold. First,

in the case for abstraction λ. e , we evaluate the body e under
the lifted environment lifts(σ) to obtain the normal form of

λ. e . In other words, we partially evaluate e with the vari-

able zero unknown to obtain its normal form. Secondly, the

static part of a function, evlam(e,σ), receives an additional

renaming ρ to be mapped over σ to account for any envi-

ronment extensions. Finally, in the case for application, an

identity renaming ρid is passed accordingly to indicate that

the static function r1 should be evaluated under the current

environment.

It may first appear that since we pass only ρid to r1, it
would not be necessary to pass a renaming at all. This is not

the case, since behind the scene, eval receives an additional

proof stating that each element of σ satisfies R. When we

evaluate a body e of an abstraction, as in eval(e, lifts(σ)),
we have to construct a proof that each element of lifts(σ)
satisfies R. It eventually requires us to prove that arbitrary

weakening (renaming) preserves R (as well as termination,

equality, and reduction).

The obtained partial evaluator exhibits features that are

present in the traditional online partial evaluator and the

one that is not. As in the traditional online partial evaluator,

it constructs both the specialized dynamic function for resid-

ualization and a static function for further specialization.

To construct the former, we eagerly evaluate the body un-

der an environment where the current variable is unknown

(which we could postpone until the abstraction is actually

residualized for efficiency reason).

On the other hand, to specialize an application, we recurse

over the function part and simply apply the result to an argu-

ment. This is in contrast to the traditional partial evaluator,

where we dispatch according to whether the function part is

statically known or not. If it is known at partial evaluation

time, we proceed, while if it is not, we residualize. In the

extracted program above, such a case dispatch does not exist.

This is because our definition of the logical predicate R is

quite expressive: it constructs a neutral term when the func-

tion part is a variable (dynamic). In other words, the case

analysis on whether the function part is statically known

is built into the definition of R. It would be interesting to

investigate if we could define a weaker version of R that does

not handle application of a dynamic variable and thus we

need to dispatch explicitly in the application case of eval.

5 Conclusion and Perspectives
In this paper, we have shown that we can extract a standard

online partial evaluator from a termination proof of a call-by-

name calculus with a non-deterministic reduction relation.

Although we could obtain a partial evaluator for the call-

by-name lambda calculus, our goal is to obtain a partial

evaluator for the call-by-value lambda calculus. A prelimi-

nary investigation shows that scaling the textbook proof to

deterministic call-by-value case is straightforward (but with

some twists to make sure that the argument to be substituted

is always a value). For the non-deterministic case, however, it

is non-trivial. We ultimately want to extract a CPS-based par-

tial evaluator [11] that performs the so-called let insertion.

To support let insertion, however, it turns out that we need to

incorporate a CPS transformation or a monadic transforma-

tion into account. We would then need a reduction relation

66

Extracting a Call-by-Name Partial Evaluator from a Proof of Termination PEPM ’19, January 14–15, 2019, Cascais, Portugal

that can simulate reduction in CPS [14]. As future work, we

intend to pursue this direction.

Acknowledgments
I would like to thank Youyou Cong and anonymous review-

ers for comments and discussions. This work was partly

supported by JSPS KAKENHI under Grant No. JP18H03218.

References
[1] Allais, G., J. Chapman, C. McBride, and J. McKinna “Type-and-scope

safe programs and their proofs,” Proceedings of the 6th ACM SIGPLAN
Conference on Certified Programs and Proofs (CPP’17), pp. 195–207
(January 2017).

[2] Altenkirch, T., and B. Reus “Monadic Presentations of Lambda Terms

Using Generalized Inductive Types,” Proceedings of the 13th Interna-
tional Workshop and 8th Annual Conference of the EACSL on Computer
Science Logic (CSL’99), pp. 453–468 (September 1999).

[3] Barendregt, H. P. The Lambda Calculus: its Syntax and Semantics, North-
Holland (1984).

[4] Benton, N., C-K. Hur, A. J. Kennedy, and C. McBride “Strongly Typed

Term Representations in Coq,” Journal of Automated Reasoning, Vol. 49,
No. 2, pp. 141-159, Springer (August 2012).

[5] Berger, U., S. Berghofer, P. Letouzey, and H. Schwichitenberg “Program

extraction from normalization proofs,” Studia Logica 82, pp. 25–49
(2006).

[6] Biernacka, M., and D. Biernacki “A Context-based Approach to Proving

Termination of Evaluation,” Electronic Notes in Theoretical Computer
Science, Vol. 249, pp. 169–192 (August 2009).

[7] Biernacka, M., O. Danvy, and K. Støvring “Program Extraction From

Proofs of Weak Head Normalization,” Electronic Notes in Theoretical
Computer Science, Vol. 155, pp. 169–189 (May 2006).

[8] Danvy, O. “Type-Directed Partial Evaluation,” Conference Record of the
23rd Annual ACM Symposium on Principles of Programming Languages,
pp. 242–257 (January 1996).

[9] de Bruijn, N. G. “Lambda Calculus Notation with Nameless Dummies,

a Tool for Automatic Formula Manipulation, with Application to the

Church-Rosser Theorem,” Indagationes Mathematicae, Vol. 34, pp. 381–
392 (1972).

[10] Jones, N. D., C. K. Gomard, and P. Sestoft Partial Evaluation and Auto-
matic Program Generation, New York: Prentice-Hall (1993).

[11] Lawall, J. L., and O. Danvy “Continuation-Based Partial Evaluation,”

Proceedings of the 1994 ACM Conference on Lisp and Functional Pro-
gramming, pp. 227–238 (June 1994).

[12] Pierce, B. C. Types and Programming Languages, Cambridge: MIT Press

(2002).

[13] Ruf, E. Topics in Online Partial Evaluation, Ph.D. thesis, Stanford Uni-

versity (March 1993). Also published as Stanford Computer Systems

Laboratory technical report CSL-TR-93-563.

[14] Sabry, A., and M. Felleisen “Reasoning about Programs in

Continuation-Passing Style,” Lisp and Symbolic Computation, Vol. 6,
Nos. 3/4, pp. 289–360, Kluwer Academic Publishers (1993).

67

	Abstract
	1 Introduction
	2 Term Representation
	2.1 Renaming
	2.2 Substitution
	2.3 Reduction Relation

	3 Termination Proof in the Textbook
	4 Termination Proof of Strong Reduction
	5 Conclusion and Perspectives
	Acknowledgments
	References

