
A Type Theoretic Specification of Type Inference

Kenichi Asai Kyoko Kadowaki
Ochanomizu University, Japan

asai@is.ocha.ac.jp, kado@pllab.is.ocha.ac.jp

Abstract
This paper presents the complete formalization of type inference
for simply-typed lambda calculus, including unification, and proves
its soundness as well as completeness in the dependently-typed pro-
gramming language Agda. The formalization clearly shows the in-
teraction between allocation of new metavariables and substitution,
something that was not observed in the previous formalizations. Af-
ter introducing metavariables generically using the two-level types
approach by Sheard and Pasalic, we extend McBride’s unification
algorithm to work on generic data defined in the sum-of-product
form. We then define a type inference function that, given an un-
typed term, returns either a proof that the term is untypable or a cor-
responding well-typed term together with the proof that the inferred
type is most general. During the proof development, we introduce a
parallel relation between two inequalities, the key relation to keep
the proof simple and clear. As a result, we could summarize the
soundness of the type inference as typing rules that are intuitively
clear but reflect all the details of the type inference in Agda.

General Terms Languages

Keywords Type inference, unification, mechanized proof, Agda,
dependent type, generic programming

1. Introduction
Internal verification of programs (Altenkirch 1996; Stump 2016)
utilizes types to express various properties on data structures or
programs and enables us to maintain or prove those properties
directly and ingeniously. With internal verification, we can keep
variety of properties, such as the length of vectors, the balanced
property of Braun trees, and even ordering invariants for a generic
data in which most of the proofs are done automatically (McBride
2014). In his keynote talk at ICFP 2013, Ulf Norell showed us how
the internal encoding of λ terms leads to a beautiful type checking
algorithm.

However, internal verification has not been used for type infer-
ence so far, partly because type inference, unlike type checking, re-
quires unification of metavariables. Although we have various nice
techniques of internal verification, e.g., the automatic assurance of
type soundness by writing a typed interpreter, we have not been
able to use them for type inference, and hence many static analyses
that are often formalized as type inference problems. Thus, one can
discuss correctness of offline partial evaluation (Asai et al. 2014),

[Copyright notice will appear here once ’preprint’ option is removed.]

but not the binding time analysis it depends on. This is unfortunate,
especially in the presence of the structurally recursive unification
algorithm (McBride 2003), which could form a basis for the whole
development.

In this paper, we present the complete formalization of type in-
ference for simply-typed λ-calculus, including unification, where
the soundness and completeness properties are internally expressed
in the type inference algorithm. The formalization is done in Agda
(Norell 2008), which is based on dependent type theory (Martin-
Löf 1984). Our formalization of type inference relies on three tech-
niques: McBride’s unification algorithm, generic programming,
and a novel parallel relation between two inequalities (i.e., types).

We exploit McBride’s unification algorithm to formalize type
inference, thereby establishing the solid mechanized foundation of
type inference that uses unification. Since we want our formaliza-
tion to be applicable to various type systems, we extend McBride’s
unification algorithm to work on any data defined generically in the
sum-of-product form. We then formalize type inference on top of it
as a function from an untyped term to the corresponding well-typed
term, where both soundness and completeness properties are built
into types.

Since McBride’s unification algorithm keeps track of the num-
ber of metavariables, a naive formalization on top of it requires
many calculations on the number of metavariables, disturbing the
essence of the underlying type inference algorithm.1 To maintain
the proof simple and clear, we introduce inequalities on the number
of metavariables and the parallel relation that must hold between
two inequalities. The parallel relation not only enables us to avoid
maintaining the exact number of metavariables but also allows us
to prove necessary but easy inequalities only.

The formalization clearly shows the interaction between alloca-
tion of new metavariables and substitution, something that was not
observed in the previous formalizations. Although the proof itself
is non-trivial, we can keep the structure of the type inference very
close to type checking thanks to the parallel relation. The resulting
type inference is simple enough to understand without sacrificing
the fine details of the proof including the number of metavariables.

The contributions of this paper are summarized as follows.

• We extend the structurally recursive unification algorithm by
McBride (2003) so that it works for arbitrary sum-of-product
type of generic data.
• We formalize type inference including unification for simply-

typed λ-calculus and prove its correctness in Agda.
• We introduce the parallel relation between two inequalities and

show how it simplifies the correctness proof considerably.
• We clarify the interaction between allocation of new metavari-

ables and substitution in the type inference.

1 This is reminiscent of the proof with α-equivalence where the freshness
condition disturbs the essence of the proof.

1 2020/9/30

types: t := unit | t1 → t2
type environments: Γ := (empty) | Γ, x : t
terms: e := x | λx. e1 | e1 e2 | •
typing rules:

Γ(x) = t

Γ ` x : t
(TVar)

Γ, x : t2 ` e1 : t1

Γ ` λx. e1 : t2 → t1
(TLam)

Γ ` e1 : t2 → t1 Γ ` e2 : t2
Γ ` e1 e2 : t1

(TApp)
Γ ` • : unit

(TUnit)

Figure 1. Simply-typed λ-calculus with unit

• We formulate the type inference as typing rules that incorpo-
rate substitution of matevariables explicitly and that precisely
correspond to Agda implementation.

In the next section, we describe the uses of metavariables in type
inference, and introduce metavariables to the generic programming
framework. In Section 3, we extend McBride’s unification algo-
rithm to generic data and introduce the parallel relation. After defin-
ing the simply-typed λ-calculus in Agda in Section 4, we show type
inference in Section 5. Related work is in Section 6 and the paper
concludes in Section 7.

In Agda, lexical tokens are separated by spaces, parentheses,
and braces only. All the other characters (including unicode char-
acters) can constitute an identifier. For example, l≤l′ is a single
identifier, while l ≤ l′ (with spaces around ≤) is a predicate (type)
stating that l is less than or equal to l′. Although we try to explain
various features of Agda as we proceed, we assume basic famil-
iarity with Agda. For thorough introduction, see (Norell 2008) for
example.

The complete Agda code is submitted as the anonymous sup-
plementary material for interested reviewers.

2. Metavariables, Generically
When we specify a language, we use metavariables. For example,
Figure 1 defines types, type environments, terms, and typing rules
for the standard simply-typed λ-calculus, extended with unit • of
type unit. In the figure, t, Γ, x, and e (possibly with subscripts)
are metavariables, representing types, type environments, variables,
and terms, respectively.

Metavariables play an important role in type inference. Given
a type environment and a term, type inference returns the type
of the term under the type environment, according to the typing
rules. This view of type inference goes without problems for units,
variables, and applications. To infer the type of λx. e1, however, we
need to infer the type of e1 under the type environment extended
with the type of x. But what is the type of x? We don’t know yet. It
will be fixed during the type inference of the body e1. To represent
the yet unknown type of x, we use a metavariable, meaning that the
type of x can be any type at this moment. During the type inference
of the body e1, it will be instantiated to a required type.

The presence of metavariables during type inference means that
we need to somehow support metavariables in the type inference.
One way to do it is to extend the grammar with metavariables. For
example, we can redefine types as

t := unit | t1 → t2 |m

where m represents a metavariable. However, this method works
only for this particular type. Since we want to implement type infer-
ence not only for the simply-typed λ-calculus but also for various
other languages, we employ generic programming and introduce
metavariables to any generically specified data definition. We can

then define (and prove correct) unification once and for all for any
generic data.

In the generic programming, data is defined in the sum-of-
product form as a pattern functor and arbitrary large data is con-
structed by closing the recursive position by a fixed-point operator.
We use a simplified version of Regular (van Noort et al. 2008) as
formulated by Magalhães and Löh (2012). In Regular, a pattern
functor is defined as follows:

data Code : Set where
U : Code –– unit
I : Code –– recursive position
⊕ : (F G : Code)→ Code –– sum
⊗ : (F G : Code)→ Code –– product

The type Code is the type of pattern functors. The first two con-
structors, U and I, represent unit and a recursive position. In Agda,
texts after –– up to the end of line are comments. The latter two
constructors are for sum and product. In Agda, underscores show
the position of the arguments. Thus, _⊕_ and _⊗_ are infix op-
erators. We assume that _⊗_ has higher operator precedence than
⊕. For example, the pattern functor for the simple types be-
comes as follows:

TypeF : Code
TypeF = U ⊕ I ⊗ I

where U is for unit and two I’s are the argument and return types
of a function type.

Before constructing an arbitrary large (recursive) data, we relate
a pattern functor with an Agda type, by defining the following
interpretation function:

[[_]] : (F : Code)→ (A : Set)→ Set
[[U]] A = >
[[I]] A = A
[[F ⊕ G]] A = [[F]] A] [[G]] A
[[F ⊗ G]] A = [[F]] A × [[G]] A

Given a pattern functor F and a type A representing the interpreta-
tion of the recursive position, the interpretation function returns a
corresponding Agda type. The constructor U is mapped to the Agda
unit type>, which has a single inhabitant tt. The recursive position
I is mapped to the supplied type A. The sum _⊕_ is mapped to
the disjoint sum type] in Agda, which comes with two injection
functions inj1 and inj2. Finally, the product _⊗_ is mapped to the
non-dependent product type× in Agda, whose constructor is _,_.

Using the interpretation function, we can now create a recursive
data, following the two-level types approach by Sheard and Pasalic
(2004).

data µ (F : Code) (m : N) : Set where
〈_〉 : [[F]] (µ F m)→ µ F m –– fixed point
〈〈_〉〉 : (x : Fin m)→ µ F m –– metavariable

Given a pattern functor F and a natural number m (having Agda
type N of natural numbers), µ F m represents the type of data
specified by F with up to m metavariables. The first constructor
〈_〉 receives a value of type [[F]] (µ F m) to create a value of type
µ F m. Notice that the recursive position of [[F]] is filled with µ F
m itself, tying the knot of recursion. By supplying a data of type µ
F m at the recursive position, we can construct an arbitrarily large
recursive data.

Before presenting examples of simple types, we define the fol-
lowing constructor-like functions to avoid writing injection func-
tions:

TUnit : {m : N}→ µ TypeF m
TUnit = 〈 inj1 tt 〉

2 2020/9/30

⇒ : {m : N}→ (t1 t2 : µ TypeF m)→ µ TypeF m
t1⇒ t2 = 〈 inj2 (t1 , t2) 〉

The parameters in the braces are implicit arguments whose values
are inferred by Agda type checker. Using these functions, we can
easily construct, for example, (unit→ unit)→ unit:

TypeEx1 : µ TypeF 0
TypeEx1 = (TUnit⇒ TUnit)⇒ TUnit

To introduce a metavariable, we use the second constructor
〈〈_〉〉 of µ F m. Its argument is of type Fin m, which is a type
of finite natural numbers from 0 to m − 1 (constructed by zero
and suc). When m = 0 (as in TypeEx1), Fin 0 has no inhabitants
and thus no metavariables can be used. When m is greater than 0,
we can use metavariables. For example, TypeEx2 below uses one
metavariable 〈〈 zero 〉〉:
TypeEx2 : µ TypeF 1
TypeEx2 = (TUnit⇒ 〈〈 zero 〉〉)⇒ 〈〈 zero 〉〉

We can use more than one metavariable:

TypeEx3 : µ TypeF 3
TypeEx3 = (TUnit⇒ 〈〈 suc (suc zero) 〉〉)⇒ 〈〈 zero 〉〉

In TypeEx3, two metavariables are used among the allowed three.
We could also use 〈〈 suc zero 〉〉 in the type if we wanted.

The type µ F m indicates that there is up to m metavariables, not
exactly m metavariables. Thus, if a term has type µ F m, the same
term has also type µ F m′, for any m′ greater than m:

TypeEx4 : µ TypeF 4
TypeEx4 = (TUnit⇒ 〈〈 suc (suc zero) 〉〉)⇒ 〈〈 zero 〉〉

Later, we will define a function that inject a term of type µ F m into
the same term of type µ F m′.

Having defined a generic data, we next define a generic func-
tion. We could first define fmap′ that applies f to all the recursive
positions of a given term by descending down the data as follows:

fmap′ : (G : Code)→ {A B : Set}→
(f : A→ B)→ ([[G]] A→ [[G]] B)

fmap′ U f tt = tt
fmap′ I f d = f d –– apply f to recursive position
fmap′ (G1 ⊕ G2) f (inj1 d) = inj1 (fmap′ G1 f d)
fmap′ (G1 ⊕ G2) f (inj2 d) = inj2 (fmap′ G2 f d)
fmap′ (G1 ⊗ G2) f (d1 , d2) = (fmap′ G1 f d1 , fmap′ G2 f d2)

We could then define a generic catamorphic function that folds over
a given generic type.

cata′ : {F : Code}→ {m : N}→ {A : Set}→
(〈f〉 : [[F]] A→ A)→ (〈〈f〉〉 : Fin m→ A)→ (µ F m→ A)

cata′ {F} 〈f〉 〈〈f〉〉 〈 d 〉 = 〈f〉 (fmap′ F (cata′ 〈f〉 〈〈f〉〉) d)
cata′ {F} 〈f〉 〈〈f〉〉 〈〈 x 〉〉 = 〈〈f〉〉 x

Given a generic data of type µ F m, cata′ 〈f〉 〈〈f〉〉 computes a value
of type A by first applying itself to all the recursive positions of d
using fmap′. The result (of type [[F]] A) is then passed to 〈f〉 that
designates how to handle each case of the pattern functor F. Since
the data can be a metavariable, we supply another function 〈〈f〉〉 that
designates what to produce for metavariables.

Although the termination of cata′ 〈f〉 〈〈f〉〉 t is clear since the
recursive call is made by fmap′ only at the recursive positions of
t, the Agda termination checker does not infer this fact, because
the recursive call cata′ 〈f〉 〈〈f〉〉 textually appears without its third
argument. To make the termination of cata′ clear, we instantiate
the argument f of fmap′ with the recursive call cata′ 〈f〉 〈〈f〉〉 and
define these two functions mutually recursively:

mutual
fmap : {F : Code}→ (G : Code)→ {m : N}→ {A : Set}→

(〈f〉 : [[F]] A→ A)→ (〈〈f〉〉 : Fin m→ A)→
([[G]] (µ F m)→ [[G]] A)

fmap U 〈f〉 〈〈f〉〉 tt = tt
fmap I 〈f〉 〈〈f〉〉 d = cata 〈f〉 〈〈f〉〉 d –– apply cata to rec. pos.
fmap (G1 ⊕ G2) 〈f〉 〈〈f〉〉 (inj1 d) = inj1 (fmap G1 〈f〉 〈〈f〉〉 d)
fmap (G1 ⊕ G2) 〈f〉 〈〈f〉〉 (inj2 d) = inj2 (fmap G2 〈f〉 〈〈f〉〉 d)
fmap (G1 ⊗ G2) 〈f〉 〈〈f〉〉 (d1 , d2) =

(fmap G1 〈f〉 〈〈f〉〉 d1 , fmap G2 〈f〉 〈〈f〉〉 d2)

cata : {F : Code}→ {m : N}→ {A : Set}→
(〈f〉 : [[F]] A→ A)→ (〈〈f〉〉 : Fin m→ A)→ (µ F m→ A)

cata {F} 〈f〉 〈〈f〉〉 〈 d 〉 = 〈f〉 (fmap F 〈f〉 〈〈f〉〉 d)
cata {F} 〈f〉 〈〈f〉〉 〈〈 x 〉〉 = 〈〈f〉〉 x

These definitions pass Agda’s termination check, because it is now
evident that the third argument to cata is strictly decreasing. This
kind of mutually recursive function definitions appears many times
in our development. Note that the new fmap requires two pattern
functors, F and G, because we want to recurse over the pattern
functor (via G) to find the recursive position, but the recursive
position itself has the type that depend on the original functor (µ
F m).

In this paper, we will often transform metavariables without
changing the overall structure of the data. We define the following
function that maps metavariables by instantiating A in the definition
of cata with µ F m′ and 〈f〉 with 〈_〉:

〈〈cata〉〉 : {F : Code}→ {m m′ : N}→
(〈〈f〉〉 : Fin m→ µ F m′)→ (µ F m→ µ F m′)

〈〈cata〉〉 〈〈f〉〉 t = cata 〈_〉 〈〈f〉〉 t

Using 〈〈cata〉〉, we can, for example, define lift≤ that injects a term
of type µ F m into the same term of type µ F m′ when m ≤ m′:

lift≤ : {F : Code}→ {m m′ : N}→ m ≤ m′→ µ F m→ µ F m′

lift≤ m≤m′ t = 〈〈cata〉〉 (ń x→ 〈〈 inject≤ x m≤m′ 〉〉) t

where inject≤ is a function that injects x of type Fin m into the
same x of type Fin m′ given m ≤ m′. It is important that lift≤ is
defined based on inequality m ≤ m′ and the conclusion of lift≤
does not impose any constraint on the form of the number of
metavariables. One could easily define lift+ that lifts the number
of metavariables by m′.

lift+ : {F : Code}→ {m : N}→(m′ : N)→ µ F m→ µ F (m + m′)
lift+ m′ t = 〈〈cata〉〉 (ń x→ 〈〈 inject+ m′ x 〉〉) t

The applicability of this function, however, is severely restricted,
because we can apply this function only when the goal has exactly
the form µ F (m + m′) for some m and m′. Suppose we have a
goal of the form µ F (f 0) for some function f and want to prove
it by lifting the number of metavariables of a term t of type µ F
m. We cannot use lift+ directly, because µ F (f 0) does not have
the form µ F (m + m′). We have to identify that the goal has to be
of the form µ F (m + m′), prove that µ F (f 0) is actually equal
to µ F (m + m′) for some m′, and manually replace the type of t
accordingly (which is painful), before being able to use lift+ at all.
This is in contrast to lift≤, which does not impose such restriction
and which does not require manual replacement of a type of a term.
We can directly apply lift≤ in the above case and we are left with a
constraint m≤ f 0 which we can prove later. The difference between
these two becomes particularly evident when we implement more
complex functions such as type inference.

In addition to a generic function, we will need a generic predi-
cate to prove properties on generic terms. To define generic predi-
cates, we follow the same path as generic functions, but with pred-
icates instead of sets. The following interpretation function relates
a pattern functor with an Agda predicate, given a predicate P that
holds for the recursive position.

3 2020/9/30

[[_]]′ : (F : Code)→ {R : Set}→ (P : R→ Set)→ (d : [[F]] R)→ Set
[[U]]′ P tt = >
[[I]]′ P d = P d
[[F ⊕ G]]′ P (inj1 d) = [[F]]′ P d
[[F ⊕ G]]′ P (inj2 d) = [[G]]′ P d
[[F ⊗ G]]′ P (d1 , d2) = [[F]]′ P d1 × [[G]]′ P d2

We can then define the following two functions mutually recur-
sively.

mutual
everywhere : {F : Code}→ (G : Code)→ {m : N}→ (P : µ F m→ Set)→

(〈f〉 : (d : [[F]] (µ F m))→ [[F]]′ P d→ P 〈 d 〉)→
(〈〈f〉〉 : (x : Fin m)→ P 〈〈 x 〉〉)→
(d : [[G]] (µ F m))→ [[G]]′ P d

everywhere U P 〈f〉 〈〈f〉〉 tt = tt
everywhere I P 〈f〉 〈〈f〉〉 d = ind P 〈f〉 〈〈f〉〉 d –– apply ind to rec. pos.
everywhere (G1 ⊕ G2) P 〈f〉 〈〈f〉〉 (inj1 d) = everywhere G1 P 〈f〉 〈〈f〉〉 d
everywhere (G1 ⊕ G2) P 〈f〉 〈〈f〉〉 (inj2 d) = everywhere G2 P 〈f〉 〈〈f〉〉 d
everywhere (G1 ⊗ G2) P 〈f〉 〈〈f〉〉 (d1 , d2) =

(everywhere G1 P 〈f〉 〈〈f〉〉 d1 , everywhere G2 P 〈f〉 〈〈f〉〉 d2)

ind : {F : Code}→ {m : N}→ (P : µ F m→ Set)→
(〈f〉 : (d : [[F]] (µ F m))→ [[F]]′ P d→ P 〈 d 〉)→
(〈〈f〉〉 : (x : Fin m)→ P 〈〈 x 〉〉)→ (t : µ F m)→ P t

ind {F} P 〈f〉 〈〈f〉〉 〈 d 〉 = 〈f〉 d (everywhere F P 〈f〉 〈〈f〉〉 d)
ind {F} P 〈f〉 〈〈f〉〉 〈〈 x 〉〉 = 〈〈f〉〉 x

The second one defines the induction principle that proves that a
generic data t satisfies a predicate P.

3. First-order Unification, Generically
During type inference, types (possibly containing metavariables)
are unified to satisfy type constraints present in the typing rules.
To implement unification in type theory where all function must
terminate, McBride (2003) presented a unification algorithm that is
structurally recursive and hence is guaranteed to terminate.

3.1 Thick
McBride’s key observation is that whenever a metavariable is in-
stantiated, the number of (uninstantiated) metavariables reduces by
one. To reduce the number of metavariables, we first define a func-
tion thick. It receives two arguments, x and y (of type Fin (suc
m)), and checks whether they differ. When they do, it ‘thickens’
the number y at position x. Intuitively speaking, x represents the
metavariable to be instantiated (and removed) and y is some other
metavariable. Then, thick x y returns a new y (of type Fin m) after x
is removed. Mathematically, it is defined as follows, where nothing
and just are the two constructors of Agda’s Maybe (option) type.

thick x y =

 just y (y < x)
nothing (y = x)
just (y− 1) (y > x)

For example, suppose that TypeEx3 in Section 2 is obtained as a
result of instantiating the metavariable 〈〈 suc zero 〉〉 (and hence the
metavariable 〈〈 suc zero 〉〉 is not present in TypeEx3). Since 〈〈 suc
zero 〉〉 is no longer used and is removed, we want to decrease the
number of metavariables from three to two. To do so, we rename
the metavariable bigger than 〈〈 suc zero 〉〉 by its predecessor. In
other words, we apply thick 〈〈 suc zero 〉〉 to all the metavariables
in TypeEx3. The result becomes as follows.

TypeEx5 : µ TypeF 2
TypeEx5 = (TUnit⇒ 〈〈 suc zero 〉〉)⇒ 〈〈 zero 〉〉

Observe that 〈〈 zero 〉〉 remains the same as in TypeEx3, but 〈〈 suc
(suc zero) 〉〉 is changed to 〈〈 suc zero 〉〉, and both the metavariables
have type Fin 2.

We will also use thin, the partial inverse of thick.

thin x y′ =

{
y′ (y′ < x)
y′ + 1 (y′ ≥ x)

For any x and y of type Fin (suc m) and y′ of type Fin m, we have
thin x y′ = y if and only if thick x y = just y′. It is useful to define a
version of thick that comes with this property.

thick2 : {m : N}→ (x y : Fin (suc m))→
x ≡ y] Σ[y′ ∈ Fin m] thin x y′ ≡ y

In the return type, Σ[y′ ∈ Fin m] thin x y′ ≡ y denotes a dependent
product whose first element is a number y′ and second element
is a proof for thin x y′ ≡ y. See the accompanying code for the
straightforward definitions of thick, thin, and thick2.

3.2 Occur Check
Using thick, we can define a function check that performs the occur
check. Since we want to prove both the soundness and complete-
ness of type inference, the occur check not only returns whether a
variable occurs in a data, but also its proof.

check : {F : Code}→ {m : N}→
(x : Fin (suc m))→ (t : µ F (suc m))→
(Σ[C ∈ Context F (µ F (suc m))] plug C 〈〈 x 〉〉 ≡ t)
] (Σ[t′ ∈ µ F m] 〈〈cata〉〉 (〈〈_〉〉 ◦ thin x) t′ ≡ t)

If a metavariable x occurs in a type t, check x t returns a context
that, when filled with the variable, becomes the type t, showing
that x actually occurs in t. The definition of Context and plug are
standard and omitted; we extend (McBride 2003b) to cope with
generic data. If a metavariable x does not occur in a type t, on the
other hand, we can thicken the metavariables in t at x to produce
a type t′ with one less metavariables. The original term t is then
expressed as thinning t′ at x, ensuring that x does not actually occur
in t.

check {F} {m} x t =
ind (ń t→ (Σ[fs ∈ Context F (µ F (suc m))] plug fs 〈〈 x 〉〉 ≡ t)
] (Σ[t′ ∈ µ F m] cata 〈_〉 (〈〈_〉〉 ◦ thin x) t′ ≡ t))

(〈check〉 F x) (〈〈check〉〉 x) t

The occur check is implemented by ind, using two functions,
〈check〉 and 〈〈check〉〉, that take care of the pattern functor case and
the metavariable case, respectively. The former simply traverses the
generic data recursively to propagate the result of recursive posi-
tions to the call site. It is somewhat lengthy but can be straightfor-
wardly defined, following the recursive structure of everywhere.

The real occur check is done in 〈〈check〉〉, using thick2.

〈〈check〉〉 : {F : Code}→ {m : N}→ (x y : Fin (suc m))→
(Σ[C ∈ Context F (µ F (suc m))] plug {F} C 〈〈 x 〉〉 ≡ 〈〈 y 〉〉)
] (Σ[t′ ∈ µ F m] 〈〈cata〉〉 (〈〈_〉〉 ◦ thin x) t′ ≡ 〈〈 y 〉〉)

〈〈check〉〉 x y with thick2 x y
... | inj1 x≡y = inj1 ([] , (cong 〈〈_〉〉 x≡y)) –– x occurs in y
... | inj2 (y′ , thinxy′≡y) = inj2 (〈〈 y′ 〉〉 , (cong 〈〈_〉〉 thinxy′≡y))

3.3 Substitution
We next define substitution. Following McBride (2003), we repre-
sent substitution as a snoc list.

data AList (F : Code) : (l m : N)→ Set where
anil : {m : N}→ AList F m m –– empty substitution
asnoc/_ : {l m : N}→ (σ : AList F l m)→ (t : µ F l)→

(x : Fin (suc l))→ AList F (suc l) m –– maps x to t before σ

When a substitution σ is applied to a type t, σ replaces metavari-
ables in t one by one, reducing the number of metavariables in
t. The type AList F l m represents a substitution that transforms
a type with l metavariables to a type with m metavariables. The

4 2020/9/30

empty substitution anil does not change the number of metavari-
ables, and hence has type AList F m m. On the other hand, σ asnoc
t / x replaces the metavariable x with t, thus reducing the number
of metavariables by one, before applying the rest of the substitution
σ. From the definition of AList, we can easily show that whenever
σ has type AList F l m, l must be equal to or greater than m.

We can append two substitutions, ρ and σ, to obtain ρ ++ σ,
which applies σ first, followed by ρ.

++ : {F : Code}→ {l m n : N}→
(ρ : AList F m n)→ (σ : AList F l m)→ AList F l n

ρ ++ anil = ρ
ρ ++ (σ asnoc t / x) = (ρ ++ σ) asnoc t / x

Observe the numbers of metavariables exhibit transitivity, if we
interpret AList F l m as m ≤ l. See Figure 2 (left).

When we implement type inference, we will need to lift the
number of metavariables of a substitution, too. Suppose we have
a data with l metavariables and a substitution σ of type AList F l
m that reduces the number of metavariables from l to m. Suppose
further that we want to introduce k new metavariables, resulting
in k + l metavariables in total. To apply σ to the resulting data,
we first need to lift σ so that it can accept k + l metavariables.
Since σ operates on the first l metavariables only, σ should leave
the new k metavariables intact. In other words, after lifting, we need
a substitution that reduces the number of metavariables from k + l
to k + m, where the new k metavariables remain the same. We can
actually define a function that has such a type:

liftAList : {F : Code}→ {l m : N}→ (k : N)→
(σ : AList F l m)→ AList F (k + l) (k + m)

However, as we saw for the function lift≤ in Section 2, applicability
of this function is severely restricted, because we have to not only
specify the number k by ourselves but also adjust the number of
metavariables manually in the return type of the function to be
exactly in the forms k + l and k + m.

It is in general not a good idea to unnecessarily constrain the
return type of a function. McBride (2014, Section 4) made a similar
observation. To avoid the problem, we can introduce new variables
together with constraints they have to satisfy.

liftAList′ : {F : Code}→ {l l′ m m′ : N}→ (k : N)→
l′ ≡ k + l→ m′ ≡ k + m→ (σ : AList F l m)→ AList F l′ m′

With this definition, we do not have to adjust the return type of the
function manually, but we are given separate constraints that we
can satisfy later with the help of Agda type checker.

However, there still remains a problem that we have to specify
the number k explicitly. Since the required number of new metavari-
ables varies depending on which kind of terms we are working
on, the need to explicitly specify the number k disturbs the struc-
ture of the proofs with unnecessary calculation of the number of
metavariables. However, the exact number of new metavariables in
each case is not important. We just allocate some metavariables as
needed. Thus, what we really want to express is the inequality.

liftAList≤′ : {F : Code}→ {l m m′ : N}→ (m≤m′ : m ≤ m′)→
(σ : AList F l m)→ AList F ((m′ .− m) + l) m′

Instead of specifying the difference k, we supply an inequality
m ≤ m′ and state that we lift the number of metavariables from
m to m′. This definition liberates us from keeping the number of
metavariables exactly. In return, however, it requires us to handle a
rather complex formula (m′ .− m) + l, where m′ .− m represents
subtraction on natural numbers, i.e., the result becomes 0 if m
is greater than m′. The formula arises because l and m are not
independent. If m is raised to m′, l must be raised the amount
exactly the same as m is raised, namely, m′ .− m.

l
m

n

σ
ρ l

m

l′

m′

n
σ

σ′

ρ
l≤l′

m≤m′

Figure 2. Concatenation of two substitutions, σ and ρ. When the
numbers of metavariables match, they can be appended directly (ρ
++ σ, left). When new metavariables are allocated between the
two substitutions, we need lifting of σ (ρ +〈 para 〉 σ, right, where
para is a proof term for l≤l′ // m≤m′ and σ′ is liftAList≤ para
σ).

Introducing another variable with an equality constraint (as we
did for liftAList′) is not a good idea, because it does not liberate
us from managing the subtraction formula. What we really want
to do is to introduce inequality constraints for both l and m, while
maintaining the dependency between them. For this purpose, we
introduce the following inductive relation between two inequalities.

data _//_ : {l l′ m m′ : N}→ l ≤ l′→ m ≤ m′→ Set where
Refl : {m m′ : N}→ (m≤m′ : m ≤ m′)→ m≤m′ // m≤m′

Step : {l l′ m m′ : N}→ {l≤l′ : l ≤ l′}→
{m≤m′ : m ≤ m′}→ l≤l′ // m≤m′→ s≤s l≤l′ // m≤m′

Two inequalities, l≤l′ and m≤m′ where l is greater than or equal to
m, are in parallel, written l≤l′ // m≤m′, when their differences are
the same, i.e., l′ .− l = m′ .− m. The first constructor says that an
inequality is in parallel to itself. The second constructor says that
when two inequalities are in parallel, we obtain another parallel
inequalities by adding 1 to both sides of the first inequality. The
constructor s≤s adds 1 to both sides of the argument inequality. If
l≤l′ and m≤m′ are in parallel, we have that l′ is greater than or
equal to m′ by the same amount as l and m. Intuitively, l, m, l′, and
m′ form a parallelogram as illustrated in Figure 2 (right).

Using this relation, we can finally define the lifting function for
substitutions that is sufficiently easy to use.

liftAList≤ : {F : Code}→ {l l′ m m′ : N}→
{l≤l′ : l ≤ l′}→ {m≤m′ : m ≤ m′}→ l≤l′ // m≤m′→
(σ : AList F l m)→ AList F l′ m′

We can lift a substitution σ from AList F l m to AList F l′ m′,
when l≤l′ and m≤m′ are in parallel. Notice that the conclusion of
the definition does not impose any restriction on the numbers of
metavariables and that it does not contain any complex formula.
All the necessary constraints are embedded in the parallel relation
of two inequalities.

The definition of liftAList≤ in terms of the parallel relation
between two inequalities is one of the technical contributions of
this paper. It not only avoids manual replacement of a type of a
term, but also keeps the necessary constraints on the number of
metavariables minimally. Without the definition of liftAList≤, it
would have been impossible to describe type inference in the form
of typing rules (as we show in Section 5) while showing all the fine
details of the number of metavariables.

Using liftAList≤, we can define more flexible version of the
substitution concatenation that lifts the second substitution (the one
that is applied first) before concatenation, which we use in the
subsequent development.

+〈〉_ : {F : Code}→ {l m l′ m′ n : N}→
{l≤l′ : l ≤ l′}→ {m≤m′ : m ≤ m′}→
(ρ : AList F m′ n)→ l≤l′ // m≤m′→ (σ : AList F l m)→
AList F l′ n

ρ +〈 para 〉 σ = ρ ++ liftAList≤ para σ

5 2020/9/30

In this definition, m′ in the type of ρ does not have to be exactly the
same as m in the type of σ, as long as m′ is greater than or equal to
m. Within the angle brackets, we specify the parallel relation that
must hold to connect the two substitutions. Note that the numbers of
metavariables still exhibit transitivity, intertwined with the parallel
relation, as depicted in Figure 2.

3.4 Unifier
To apply a substitution to a generic data, we first turn the substitu-
tion into a unifier, an Agda function from metavariables to generic
data.

sub : {F : Code}→ {m m′ : N}→
(σ : AList F m m′)→ Fin m→ µ F m′

sub anil = 〈〈_〉〉
sub (σ asnoc t / x) = 〈〈cata〉〉 (sub σ) ◦ (t for x)

It decomposes a substitution, turns each element to an Agda func-
tion, and composes the results using the function composition op-
erator ◦. Here, t for x is a function that maps a metavariable y to t if
y is equal to x, and otherwise thickens y.

for : {F : Code}→ {m : N}→
(t : µ F m)→ (x : Fin (suc m))→ Fin (suc m)→ µ F m

(t for x) y with thick x y
... | nothing = t –– x = y
... | just y′ = 〈〈 y′ 〉〉 –– y is thickened to y′

Once a substitution is turned into a unifier, we can use 〈〈cata〉〉 to
apply it to all the metavariables in a data. Since we often want to lift
the number of metavariables before applying a unifier, it is handy
to define the following three functions.

〈〈cata〉〉≤ 〈〈f〉〉 m≤m′′ t = 〈〈cata〉〉 〈〈f〉〉 (lift≤ m≤m′′ t)

applySub σ t = 〈〈cata〉〉 (sub σ) t

applySub≤ σ m≤m′′ t = applySub σ (lift≤ m≤m′′ t)

3.5 Unification
We are now ready to define unification.

mgu : {F : Code}→ {m : N}→ (t1 t2 : µ F m)→
ununifiable t1 t2
] (Σ[m′ ∈ N] Σ[σ ∈ AList F m m′] mg t1 t2 (sub σ))

The function mgu takes two data, t1 and t2, both with m metavari-
ables, and returns either a proof that t1 and t2 are not unifiable or
a unifying substitution σ together with the proof that sub σ is the
most general unifier for them.

Two data t1 and t2 are ununifiable, when there exists no unifier
that unifies them.

ununifiable : {F : Code}→ {m : N}→ (t1 t2 : µ F m)→ Set
ununifiable {F} {m} t1 t2 =

(l′ l′′ : N)→ (m≤l′′ : m ≤ l′′)→ (f0 : Fin l′′→ µ F l′)→
¬ (〈〈cata〉〉≤ f0 m≤l′′ t1 ≡ 〈〈cata〉〉≤ f0 m≤l′′ t2)

Note that we consider not only unifiers for m metavariables but
also any unifiers that accept more than m metavariables. We have
to take such unifiers into account, because they arise as the result
of introducing new metavariables during type inference.

A unifier g is the most general unifier for t1 and t2, if (1) g
unifies t1 and t2 and (2) any unifier f that unifies t1 and t2 can be
represented as the composition of some f′ and possibly lifted g for
any x in the first m metavariables.

mg : {F : Code}→ {m m′ : N}→ (t1 t2 : µ F m)→
(g : Fin m→ µ F m′)→ Set

mg {F} {m} {m′} t1 t2 g =
(〈〈cata〉〉 g t1 ≡ 〈〈cata〉〉 g t2) ×
((l′ l′′ : N)→ (f : Fin l′′→ µ F l′)→ (m≤l′′ : m ≤ l′′)→

(〈〈cata〉〉≤ f m≤l′′ t1 ≡ 〈〈cata〉〉≤ f m≤l′′ t2)→

(Σ[k′′ ∈ N] Σ[m′≤k′′ ∈ m′ ≤ k′′] Σ[para ∈ m≤l′′ // m′≤k′′]
Σ[f′ ∈ (Fin k′′→ µ F l′)]
((x : Fin m)→

f (inject≤ x m≤l′′) ≡ (f′ +〈 para 〉′ g) (inject≤ x m≤l′′))))

There are two subtle points in this definition. First, it includes
many lifting operations to account for possible allocation of new
metavariables. In particular, the number of metavariables of the
input of f and f′ are set in a least restrictive way. Second, and more
importantly, the decomposition of f is considered only for the first
m metavariables, i.e., the metavariables appearing in t1 and t2. By
restricting the considered case to the first m metavariables only,
we obtain flexibility in choosing f′. The same technique is used by
Leroy (1992, page 28).

The function mgu is defined using a helper function amgu
written in the accumulator passing style.

mgu t1 t2 with amgu t1 t2 anil
... | inj1 f rewrite 〈〈-〉〉-id t1 | 〈〈-〉〉-id t2 = inj1 f
... | inj2 (m′ , σ , mgσ) rewrite 〈〈-〉〉-id t1 | 〈〈-〉〉-id t2 = inj2 (m′ , σ , mgσ)

Here, 〈〈-〉〉-id asserts that applying an empty unifier cancels out.

〈〈-〉〉-id : {F : Code}→ {m : N}→ (t : µ F m)→ 〈〈cata〉〉 〈〈_〉〉 t ≡ t

In the following, we do not explain this kind of rewrite rules that are
needed to go through the proof but whose contents are unimportant.
Starting from the empty substitution, amgu accumulates necessary
substitution by traversing over the given data.

amgu : {F : Code}→ {m m′ : N}→ (t1 t2 : µ F m)→
(ρ : AList F m m′)→
ununifiable (applySub ρ t1) (applySub ρ t2)

] (Σ[m′′ ∈ N] Σ[σ ∈ AList F m′ m′′]
mg (applySub ρ t1) (applySub ρ t2) (sub σ))

amgu t1 t2 anil
rewrite 〈〈-〉〉-id t1 | 〈〈-〉〉-id t2 = amguAnil t1 t2

amgu t1 t2 (ρ asnoc t / x)
with amgu (〈〈cata〉〉 (t for x) t1) (〈〈cata〉〉 (t for x) t2) ρ

... | inj1 f
rewrite fuse (sub ρ) (t for x) t1 | fuse (sub ρ) (t for x) t2
= inj1 f

... | inj2 (m′′ , σ′ , mgσ′)
rewrite fuse (sub ρ) (t for x) t1 | fuse (sub ρ) (t for x) t2
= inj2 (m′′ , σ′ , mgσ′)

The function amgu is defined by induction on m, or equivalently,
the length of the substitution in the accumulator. When m is positive
(i.e., when the substitution has the form σ asnoc t / x), we can
reduce the number of metavariables by substituting t for x in t1 and
t2. Note that because of the substitution, the sizes of t1 and t2 can
become bigger than before. This is where the standard termination
argument fails. We can make a recursive call here, because we keep
track of the number of metavariables that is strictly decreasing.

When m is zero (when the substitution is empty), amgu delegate
the task to amguAnil.

amguAnil : {F : Code}→ {m : N}→ (t1 t2 : µ F m)→
ununifiable t1 t2

] (Σ[m′′ ∈ N] Σ[σ ∈ AList F m m′′] mg t1 t2 (sub σ))
amguAnil {F} 〈 d1 〉 〈 d2 〉 with amgu′ F d1 d2 anil
... | inj1 f rewrite fmap-id F d1 | fmap-id F d2

= inj1 (ununifiable-〈d〉 d1 d2 f)
... | inj2 (m′ , σ′ , mgσ′) rewrite fmap-id F d1 | fmap-id F d2

= inj2 (m′ , σ′ , mg-〈d〉 d1 d2 (sub σ′) mgσ′)
amguAnil 〈 d1 〉 〈〈 x2 〉〉 with flexRigid x2 d1
... | inj1 f = inj1 (ununifiable-sym 〈 d1 〉 〈〈 x2 〉〉 f)
... | inj2 (m′ , σ′ , mgσ′) =

inj2 (m′ , σ′ , mg-sym 〈 d1 〉 〈〈 x2 〉〉 (sub σ′) mgσ′)
amguAnil 〈〈 x1 〉〉 〈 d2 〉 with flexRigid x1 d2
... | inj1 f = inj1 f

6 2020/9/30

... | inj2 (m′ , σ′ , mgσ′) = inj2 (m′ , σ′ , mgσ′)
amguAnil {m = m} 〈〈 x1 〉〉 〈〈 x2 〉〉 with flexFlex m x1 x2
... | (m′ , σ′ , mgσ′) = inj2 (m′ , σ′ , mgσ′)

When the accumulator is empty, amguAnil dispatches over the
shapes of t1 and t2. We examine each case starting from the bot-
tom. When both are metavariables (the fourth case), we return a
substitution that unifies the two metavariables using flexFlex.

flexFlex : {F : Code}→ (m : N)→ (x1 x2 : Fin m)→
(Σ[m′ ∈ N] Σ[σ ∈ AList F m m′] mg 〈〈 x1 〉〉 〈〈 x2 〉〉 (sub σ))

flexFlex zero () x2
flexFlex (suc m) x1 x2 with thick2 x1 x2
... | inj1 x1≡x2 rewrite x1≡x2 = (suc m , anil , mgAnil 〈〈 x2 〉〉)
... | inj2 (x2′ , thinx1x2′≡x2) rewrite sym thinx1x2′≡x2 =

(m , anil asnoc 〈〈 x2′ 〉〉 / x1 , mgFor x1 〈〈 x2′ 〉〉)

When the two metavariables are the same, we return the empty sub-
stitution, together with mgAnil 〈〈 x2 〉〉 stating that the empty sub-
stitution is the most general for the same data. Otherwise, we return
a substitution that unifies one of the metavariables to the thickened
version of the other, reducing the number of metavariables by one.
The proof mgFor x1 〈〈 x2′ 〉〉 states that anil asnoc 〈〈 x2′ 〉〉 / x1 is
the most general substitution for the two. (See accompanying code
for completeness-related functions, such as amguAnil and mgFor,
that are mostly omitted in the paper due to the lack of space.) We
arbitrarily chose to map x1 to 〈〈 x2′ 〉〉, but we could do the other
way around.

When exactly one of the two data is a metavariable (the sec-
ond and the third cases), we return a substitution that unifies the
metavariable to the other data using flexRigid.

flexRigid : {F : Code}→ {m : N}→ (x : Fin m)→ (d : [[F]] (µ F m))→
ununifiable {F} 〈〈 x 〉〉 〈 d 〉
] (Σ[m’ ∈ N] Σ[σ ∈ AList F m m’] mg 〈〈 x 〉〉 〈 d 〉 (sub σ))

flexRigid {m = zero} () d
flexRigid {m = suc m} x d with check x 〈 d 〉
... | inj1 ([] , ())
... | inj1 (f :: fs , eq) = inj1 (occurred f fs x d eq) –– x occurs in 〈 d 〉
... | inj2 (t′ , eq) with mgFor x t′

... | mg-t′forx rewrite eq = inj2 (m , anil asnoc t′ / x , mg-t′forx)

If the metavariable occurs in the data, there is no unifying substitu-
tion. We show there is no unifier using occurred, in a way similar to
McBride (2003b). This is one of the two cases where the unification
fails. Otherwise, it returns a substitution.

Finally, the first case is when both the data are not metavari-
ables. This case is handled by calling amgu′ and lift the result on
d1 and d2 to 〈 d1 〉 and 〈 d2 〉. We do not show the code for amgu′,
which is written as a straightforward induction similar to every-
where, but only note that it requires us to propagate the results on
subparts up to the whole data along the following line.

• If one of the subparts is ununifiable, the whole data is ununifi-
able.
• If all the subparts return the most general unifiers, we can

construct the most general unifier for the whole data.

These guidelines cover the cases for U, I, and ⊕. For products, we
need some more consideration.

• If the first projection is ununifiable, the whole product is un-
unifiable. This case can be easily shown.
• If the second projection is ununifiable, the whole product is

ununifiable, provided that the first projection returns the most
general unifier. (If the first projection unnecessarily instantiates
metavariables, it could make the second projection ununifiable.)
• If both the projections returns the most general unifier, we can

compose the most general unifier for the pair.

The second and the third cases require careful proofs, which fol-
lows McBride (2003b) but extended to handle generic data. See
accompanying code for details.

3.6 Concise Notation for Unification
Once we define the unification function, we do not have to remem-
ber all its internal workings. Instead, we pay attention only to how
the number of metavariables changes, in addition to the standard
behavior of unification, i.e., that it produces a unifying substitu-
tion. As a preparation for expressing type inference in the form of
typing rules, we introduce a concise notation for unification.

σ[↓mm′](t1
(m))

.
= σ[↓mm′](t2

(m))

This equation expresses that two terms, t1 and t2 both with m
metavariables, can be unified by the substitution σ[↓mm′]. The nota-
tion [↓mm′] after σ signifies that the substitution reduces the number
of metavariables from m to m′. The inputs to the equation are t1,
t2, and m (written in blue), and the outputs are m′ and σ (written
in red).2 The above notation precisely and concisely captures the
type of mgu including the property the returned substitution satis-
fies: the .

= sign indicates that the substitution unifies the two input
terms.

4. Well-scoped and Well-typed Terms
The input to the type inference is an untyped term. We assume that
the input term is closed and does not contain any free variables. We
define such terms using de Bruijn index.

data WellScoped (n : N) : Set where
Unit : WellScoped n
Var : (x : Fin n)→WellScoped n
Lam : (s1 : WellScoped (1 + n))→WellScoped n
App : (s1 s2 : WellScoped n)→WellScoped n

The argument n of WellScoped indicates how many binders the
term is under. The number increases whenever we go into the body
of Lam. The closedness condition is guaranteed by representing a
variable as a number from 0 to n− 1.

The output of the type inference is a typed term. We first fix the
simple types as follows using the pattern functor TypeF defined in
Section 2.

Type : (m : N)→ Set
Type m = µ TypeF m

It is a type of simple types that have at most m metavariables.
Since we use de Bruijn index, the type environment is repre-

sented as a vector of types:

Cxt : {m : N}→ N→ Set
Cxt {m} n = Vec (Type m) n

where Vec A n is a type of vectors of length n (with the constructors
[] and ::) whose elements have type A.

We then define WellTyped Γ t, the type of well-typed terms of
type t under Γ, using the same constructors as the well-scoped
terms. (Agda allows sharing of constructors between different
types. No ambiguity arises because all the Agda terms are explicitly
typed.)

data WellTyped {m n : N} (Γ : Cxt n) : Type m→ Set where
Unit : WellTyped Γ TUnit
Var : (x : Fin n)→WellTyped Γ (lookup x Γ)
Lam : {t1 : Type m}→ (t2 : Type m)→

(w1 : WellTyped (t2 :: Γ) t1)→WellTyped Γ (t2⇒ t1)

2 We will write which are the inputs and which are the outputs explicitly in
the main text. However, it is easier to read if the paper is printed in color.

7 2020/9/30

App : {t1 t2 : Type m}→ (w1 : WellTyped Γ (t2⇒ t1))→
(w2 : WellTyped Γ t2)→WellTyped Γ t1

where lookup x Γ is the x’th element of Γ. This type embodies the
typing rules of simply-typed λ-calculus. It consists of only well-
typed terms.

Given a well-scoped term, the task of type inference is to find a
corresponding well-typed term, if it exists. To relate the input and
output of type inference, we can easily define a relation between a
well-typed term and the corresponding well-scoped term obtained
by stripping off the type information.

data erase {m n : N} : {t : Type m}→ {Γ : Cxt n}
(w : WellTyped Γ t)→ (s : WellScoped n)→ Set

We define erase as a relation rather than a function, because we
sometimes want to guess the shape of the well-typed term corre-
sponding to a well-scoped term.

5. Type Inference
To formalize type inference, we first specify the properties it should
satisfy. We define untypable Γ s, meaning that s is not typable
under Γ, as follows.

untypable : {m n : N}→ (Γ : Cxt {m} n)→ (s : WellScoped n)→ Set
untypable {m} Γ s =

(l′′ l′ : N)→ (m≤l′′ : m ≤ l′′)→ (f0 : Fin l′′→ Type l′)→
(t0 : Type l′)→ (w0 : WellTyped (applyFunCxt≤ f0 m≤l′′ Γ) t0)→
¬ erase w0 s

We then define mgt σ Γ s t, meaning that σ gives the most general
type t for s under Γ.

mgt : {m m′ m′′ n : N}→ (σ : AList TypeF m′′ m′)→
(Γ : Cxt {m} n)→ (s : WellScoped n)→ (t : Type m′)→ Set

mgt {m} {m′} {m′′} σ Γ s t =
(l′′′ l′ : N)→ (m≤l′′′ : m ≤ l′′′)→
(f0 : Fin l′′′→ Type l′)→ (t0 : Type l′)→
(w0 : WellTyped (applyFunCxt≤ f0 m≤l′′′ Γ) t0)→
erase w0 s→
Σ[k′′ ∈ N] Σ[k′′′ ∈ N] Σ[m′≤k′′ ∈ m′ ≤ k′′]
Σ[m′′≤k′′′ ∈ m′′ ≤ k′′′] Σ[para ∈ m′′≤k′′′ // m′≤k′′]
Σ[m≤k′′′ ∈ m ≤ k′′′] Σ[f′ ∈ (Fin k′′→ Type l′)]
(((x : Fin m)→

f0 (inject≤ x m≤l′′′) ≡
(f′ +〈 para 〉′ (sub σ)) (inject≤ x m≤k′′′)) ×

t0 ≡ applyUnifier≤ f′ m′≤k′′ t)

The definition is long, but it reads: if there exists a unifier f0 that
gives a type t0 for s under Γ, then f0 and t0 are instantiations of sub
σ and t, respectively. To be more precise, we can find f′ such that

• f0 is the composition of sub σ and f′, possibly with lifting, and
• t0 is obtained by applying f′ to t, possibly with lifting.

We are now ready to formalize type inference. The type infer-
ence function we are going to construct has the following type.

infer : (m : N)→ {n : N}→ (Γ : Cxt {m} n)→ (s : WellScoped n)→
untypable Γ s

] Σ[m′′ ∈ N] Σ[m′ ∈ N] Σ[m≤m′′ ∈ m ≤ m′′]
Σ[σ ∈ AList TypeF m′′ m′] Σ[t ∈ Type m′]
Σ[w ∈WellTyped (applySubCxt≤ σ m≤m′′ Γ) t]
(erase w s ×mgt σ Γ s t)

Given a type environment Γ that has m metavariables and a well-
scope term s, the function infer returns either a proof that s is
untypable under Γ or (roughly) a well-typed term w as a proof that
the input term s is well typed.

To be more precise, infer returns a tuple of eight elements in the
latter case. The first element m′′ represents the number of required

metavariables during type inference of s. Since we already use m
metavariables before the type inference of s begins, m′′ must be at
least as big as m. This inequality is returned as the third element.
The second element m′ represents the number of metavariables
when the type inference of s finishes. The fourth element σ is the
substitution required to infer the type of s. It reduces the number
of metavariables from m′′ to m′. The fifth element t is the inferred
type of s, which has m′ metavariables. The sixth element is the well-
typed term w that we want to obtain. Since some metavariables may
need to be instantiated to type check s, however, w is a well-typed
term of type t not under the original type environment Γ, but Γ after
applying σ. In the type of w, the function applySubCxt≤ applies a
given substitution σ to all the types in Γ after lifting the number of
metavariables of Γ from m to m′′. The seventh element shows that
the obtained w is not an arbitrary well-typed term but actually the
well-typed version of s. Finally, the last element is the proof that
the obtained type and substitution are the most general ones for s.

In this paper, we express the soundness parts (i.e., the parts other
than untypability proofs and generality proofs) of the type inference
function infer as the following typing rule.

σ[↓m
′′

m′](↑m
′′

m Γ(m)) ` s : t(m
′)

The inputs to the type inference are Γ, s, and m (written in blue),
while the outputs are m′′, m′, σ, and t (written in red). The other
outputs of infer are represented in the judgement as follows. The
inequality m≤m′′ is implicitly shown as the lifting operator ↑m

′′
m

applied to Γ, which is possible because m≤m′′. It lifts the number
of metavariables of all the types in Γ. The well-typed term w
is represented by the whole judgement: under σ-applied Γ, the
term s is well typed and has type t. Finally, the erasure property
is expressed by the fact that the judgement can be regarded as
a well-scoped judgement if we remove the type parts. Thus, the
above notation expresses precisely and concisely all the soundness
properties of infer.

The function infer is defined by induction on terms.

infer m Γ Unit = infer-Unit m Γ
infer m Γ (Var x) = infer-Var m Γ x
infer m Γ (Lam s1) = infer-Lam m Γ s1
infer m Γ (App s1 s2) = infer-App m Γ s1 s2

Below, we will examine each case in turn. Figure 3 precisely sum-
marizes all the cases in the form of typing rules.

5.1 Unit
The type inference for the unit case becomes as follows:

infer-Unit : (m : N)→ {n : N}→ (Γ : Cxt {m} n)→
untypable Γ Unit

] Σ[m′′ ∈ N] Σ[m′ ∈ N] Σ[m≤m′′ ∈ m ≤ m′′]
Σ[σ ∈ AList TypeF m′′ m′] Σ[t ∈ Type m′]
Σ[w ∈WellTyped (applySubCxt≤ σ m≤m′′ Γ) t]
(erase w Unit ×mgt σ Γ Unit t)

infer-Unit m Γ =
inj2 (m , m , m≤m , anil , TUnit , Unit , Unit , mg-Unit)

where m≤m is a proof term for m being (less than or) equal to it-
self. The type of infer-Unit is obtained by instantiating s in the type
of infer to Unit. Since we need neither allocation of new metavari-
ables nor substitution for the unit case, the numbers of metavari-
ables become both m and the substitution is empty. The returned
type is TUnit. Since Unit is well typed in any type environments, it
trivially has the required type WellTyped (applySubCxt≤ σ m≤m
Γ) TUnit, whose erasure is also trivially Unit as required.

Completeness can be easily shown since the empty substitution
unifies two (identical) Units and any unifiers are composition of

8 2020/9/30

φ[↓mm](↑mm Γ(m)) ` • : unit(m)
(IUnit)

Γ(m)(x) = t(m)

φ[↓mm](↑mm Γ(m)) ` x : t(m)
(IVar)

σ[↓m
′′

m′](↑m
′′

1+m ((↑1+m
m Γ(m)), x : m(1+m))(1+m)) ` s1 : t1

(m′) m(1+m) is a new metavariable

σ[↓m
′′

m′](↑m
′′

m Γ(m)) ` λx. s1 : σ[↓m
′′

m′](↑m
′′

1+m m(1+m))→ t1
(m′)

(ILam)

σ3[↓1+m′
2

m′
3

](↑1+m′
2

m′
2

(σ2[↓m
′′
2

m′
2

](↑m
′′
2

m′
1
σ1[↓m

′′
1

m′
1

](↑m
′′
1

m Γ(m)) ` s1 : t1
(m′

1))))

σ3[↓1+m′
2

m′
3

](↑1+m′
2

m′
2

σ2[↓m
′′
2

m′
2

](↑m
′′
2

m′
1

(σ1[↓m
′′
1

m′
1

](↑m
′′
1

m Γ(m)))(m
′
1)) ` s2 : t2

(m′
2))

σ3[↓1+m′
2

m′
3

](↑1+m′
2

m′
2

(σ2[↓m
′′
2

m′
2

](↑m
′′
2

m′
1
t1

(m′
1))))

.
= σ3[↓1+m′

2

m′
3

](↑1+m′
2

m′
2

t2
(m′

2) → m′
2
(1+m′

2))

m′
2
(1+m′

2) is a new metavariable m′′
1 ≤ m′′′

2 //m′
1 ≤ m′′

2 m′′′
2 ≤ 1 +m′′′

2 //m′
2 ≤ 1 +m′

2

σ321[↓1+m′′′
2

m′
3

](↑1+m′′′
2

m Γ) = σ3[↓1+m′
2

m′
3

](↑1+m′
2

m′
2

(σ2[↓m
′′
2

m′
2

](↑m
′′
2

m′
1

(σ1[↓m
′′
1

m′
1

](↑m
′′
1

m Γ)))))

σ321[↓1+m′′′
2

m′
3

](↑1+m′′′
2

m Γ(m)) ` s1 s2 : σ3[↓1+m′
2

m′
3

](m′
2
(1+m′

2))
(IApp)

Figure 3. Type inference rules

itself and the empty substitution. It is shown in the omitted code
mg-Unit.

This case is summarized as (IUnit) in Figure 3, where φ stands
for the empty substitution.

5.2 Variable
The type inference for the variable case becomes as follows:

infer-Var : (m : N)→ {n : N}→ (Γ : Cxt {m} n)→ (x : Fin n)→
untypable Γ (Var x)

] Σ[m′′ ∈ N] Σ[m′ ∈ N] Σ[m≤m′′ ∈ m ≤ m′′]
Σ[σ ∈ AList TypeF m′′ m′] Σ[t ∈ Type m′]
Σ[w ∈WellTyped (applySubCxt≤ σ m≤m′′ Γ) t]
(erase w (Var x) ×mgt σ Γ (Var x) t)

infer-Var m Γ x =
inj2 (m , m , m≤m , anil , t , VarX , eq , mg-Var x)
where

t : Type m
t = lookup x Γ

Again, we need neither allocation of new metavariables nor substi-
tution. The returned type t is found in the type environment. The
well-typed term VarX (whose definition is omitted) is almost Var
x of type WellTyped Γ t. However, the required type for the well-
typed term is WellTyped (applySubCxt≤ anil m≤m Γ) t. Thus,
we need to show that applySubCxt≤ anil m≤m Γ and Γ are the
same, which can be easily proved by induction on Γ.

Completeness is again easy to show (using mg-Var, omitted),
because any unifiers are composition of itself and the empty substi-
tution.

This case is summarized as (IVar) in Figure 3. The required
property can be written in mathematical form as follows:

φ[↓mm](↑mm Γ(m)) = Γ(m)

With this equation, (IVar) becomes identical to (TVar) ensuring
that the obtained term is well typed.

5.3 Abstraction
For the abstraction case, we examine the (ILam) in Figure 3 first,
because it precisely reflects (the soundness part of) the Agda code
and is easier to understand.

To infer the type of an abstraction λx. s1, we infer recursively
the type of its body s1. To do so, however, we need to assign a yet
unknown type to the argument x. For this purpose, we allocate a
new metavariablem(1+m). The current numberm of metavariables
indicates that we have used the metavariables from 0 to m − 1 so
far. Thus, the next available metavariable is m.3

Because we allocate a new variable, the number of metavari-
ables is increased by one. To accommodate it, we lift the number of
metavariables of Γ by one. Now that both ↑1+m

m Γ(m) andm(1+m)

have 1 +m metavariables, we can form an extended type environ-
ment (↑1+m

m Γ(m)), x : m(1+m). We infer the type of s1 under this
type environment.

When the type inference of s1 finishes, we obtain the type t1
of s1 and a substitution σ together with a number m′′ of required
metavariables to infer t1 and the final number m′ of metavariables.
They together satisfy the judgement in the premise of (ILam).
Because application of a substitution to a type environment is
element wise, we can rewrite the type environment in the premise
of (ILam) as follows.

σ[↓m
′′

m′](↑m
′′

1+m (↑1+m
m Γ(m))), x : σ[↓m

′′

m′](↑m
′′

1+m m(1+m))

By fusing the two lifting operations ↑m
′′

1+m (↑1+m
m ·) into one ↑m

′′
m

·, it is further rewritten to the following.

σ[↓m
′′

m′](↑m
′′

m Γ(m)), x : σ[↓m
′′

m′](↑m
′′

1+m m(1+m))

We can then obtain the conclusion of (ILam) using (TLam).
By transcripting the above scenario, we can define infer-Lam as

follows.

infer-Lam : (m : N)→ {n : N}→
(Γ : Cxt {m} n)→ (s1 : WellScoped (1 + n))→
untypable Γ (Lam s1)

] Σ[m′′ ∈ N] Σ[m′ ∈ N] Σ[m≤m′′ ∈ m ≤ m′′]
Σ[σ ∈ AList TypeF m′′ m′] Σ[t ∈ Type m′]
Σ[w ∈WellTyped (applySubCxt≤ σ m≤m′′ Γ) t]
(erase w (Lam s1) ×mgt σ Γ (Lam s1) t)

3 When the current number of metavariables is m, it is always the case that
m is a new metavariable. Thus, the second premise of (ILam) is redundant.
We keep it for better readability. It does not mean to use a gensym-like
operator here.

9 2020/9/30

The body of infer-Lam starts by allocating a new metavariable 〈〈
fromN m 〉〉, which we call t2. Here, fromN is a function to turn an
integer m to the same finite natural number m of type Fin (1 + m).

infer-Lam m {n} Γ s1
with let

t2 : Type (1 + m)
t2 = 〈〈 fromN m 〉〉 –– new type variable
Γ′ : Cxt {1 + m} n
Γ′ = liftCxt 1 Γ

in infer (1 + m) (t2 :: Γ′) s1

We next lift the number of metavariables of Γ by one and call it Γ′.
We then infer the type of the body s1 in the type environment Γ′

extended by t2. Note that the recursive call to infer is made with m
being increased by one.

... | inj1 ill-s1 = –– s1 is ill-typed
inj1 (illtyped-Lam Γ s1 ill-s1)

If the body s1 is ill typed, the whole term is also ill typed. To
show completeness, the ill-typedness of s1 is propagated to the ill-
typedness of the whole term (using illtyped-Lam; one would need
a clever trick to treat the newly allocated metavariable t2 specially,
as shown by Nazareth and Nipkow (1996)).

... | inj2 (suc m′′ , m′ , s≤s m≤m′′ , σ , t1 , w1 , eraseW1≡S1 , mgσ) =
inj2 (suc m′′ , m′ , m≤1+m′′ , σ , σt2⇒ t1 ,

LamW1 , eraseLamW1≡LamS1 ,
mg-Lam s1 t1 m≤m′′ σ w1 eraseW1≡S1 mgσ)

where
σt2 : Type m′

σt2 = applySub≤ σ (s≤s m≤m′′) t2

If s1 is well typed, we obtain a tuple with the eight elements. During
this type inference, we used metavariables as many as the recursive
call had used, namely, m′′. We have to show that it is greater than
(or equal to) m. It can be easily seen from the fact that (1) 1 + m is
greater than m, (2) m′′ is greater than or equal to 1 + m as the third
element of the result of the recursive call shows, and the transitivity
law. The type of the abstraction becomes σt2 ⇒ t1 which has m′

metavariables.
The returned well-typed term LamW1 of type

WellTyped (applySubCxt≤ σ m≤m′′ Γ) (σt2⇒ t1)

is almost Lam σt2 w1. However, like in the variable case, we have
to adjust its type, because w1 has type

WellTyped (applySubCxt≤ σ 1+m≤m′′ (liftCxt 1 Γ)) t1

and thus Lam σt2 w1 has type

WellTyped (applySubCxt≤ σ 1+m≤m′′ (liftCxt 1 Γ)) (σt2 ⇒
t1)

which is different from the required type for LamW1. We thus have
to show that the two underlined type environments in the above two
types are equal, which can be shown by induction on the structure
of Γ and then by using the fusion property of liftings.

We can provide the seventh element eraseLamW1≡LamS1 by
attaching the Lam constructor to both sides of the recursive result
eraseW1≡S1, where we need to use the equality between the above
two type environments.

Finally, the completeness is shown in mg-Lam that promote the
generality mgσ of σ for s1 to the generality for Lam s1.

We can observe that the properties we needed to interpret Fig-
ure 3 (such as ↑m

′′
1+m (↑1+m

m ·) can be fused to ↑m
′′

m ·) must also be
shown in Agda. Put differently, we can reconstruct a proof in Agda,
once we precisely specify the type inference as in Figure 3. To our
knowledge, type inference has not been formalized as concisely as

Figure 3 without sacrificing the details to reconstruct mechanized
soundness proofs.

5.4 Application
For the application case, we again examine the (IApp) in Figure 3
first. To infer the type of s1 s2, we first infer the type of s1 and
obtain a type t1 and a substitution σ1 (the first box in the premise
of (IApp)). We then infer the type of s2 under σ1 Γ to obtain t2
and σ2 (the second box). Roughly speaking, we want to check at
this point that the type of the function part (σ2 t1) has the form
t2 → t for some type t. Since we do not know what t will be,
we allocate a new metavariable. Because we have already used m′

2

metavariables at the end of type inference of s2, we use m′
2 as the

new metavariable. Now that we have allocated a new metavariable,
t2 (which hasm′

2 metavariables) must be lifted by one to adjust the
number of metavariables. Thus, t2 → t should actually be written
as follows.

↑1+m′
2

m′
2

t2
(m′

2) → m′
2
(1+m′

2)

The type of the function part is more complicated. First of all, t1
hasm′

1 metavariables, but the substitution σ2 obtained later expects
a type with m′′

2 metavariables. Thus, we need to lift t1’s number
of metavariables from m′

1 to m′′
2 . Furthermore, after σ2 is applied,

one more metavariable (for t) is allocated. As a whole, σ2 t1 should
actually be written as follows.

↑1+m′
2

m′
2

(σ2[↓m
′′
2

m′
2

](↑m
′′
2

m′
1
t1

(m′
1)))

We can now unify these two types to obtain yet another substitution
σ3.

Since types of both s1 and s2 are obtained, we then try to use
(TApp) to obtain the type of s1 s2. However, the type environments
in the two boxes in (IApp) are not the same, because new substitu-
tions are obtained as the type inference proceeds. To restore their
equality, we apply the substitution obtained after the type inference
to each judgement. For the judgement for s2 (the second box), σ3

was obtained afterwards, so we apply σ3 to the judgement for s2. In
the figure, it is represented by applying σ3 to the box containing the
judgement for s2. It expresses to apply σ3 to both the type environ-
ment and the type in the boxed judgement. As for judgement for s1
(the first box), both σ2 and σ3 were obtained afterwards, which are
applied in this order to the judgement for s1. The two judgements
now share the same environment

σ3[↓1+m′
2

m′
3

](↑1+m′
2

m′
2

(σ2[↓m
′′
2

m′
2

](↑m
′′
2

m′
1

(σ1[↓m
′′
1

m′
1

](↑m
′′
1

m Γ(m))))))

with s1 having the type

σ3[↓1+m′
2

m′
3

](↑1+m′
2

m′
2

(σ2[↓m
′′
2

m′
2

](↑m
′′
2

m′
1
t1

(m′
1))))

and s2 having the type

σ3[↓1+m′
2

m′
3

](↑1+m′
2

m′
2

t2
(m′

2))

By the correctness property of σ3, the type of s1 is equal to

σ3[↓1+m′
2

m′
3

](↑1+m′
2

m′
2

t2
(m′

2) → m′
2
(1+m′

2))

which can be rewritten to

σ3[↓1+m′
2

m′
3

](↑1+m′
2

m′
2

t2
(m′

2))→ σ3[↓1+m′
2

m′
3

](m′
2
(1+m′

2))

Because the argument part of this type is equal to the type of s2,
we can now apply (TApp) to obtain the type of s1 s2:

σ3[↓1+m′
2

m′
3

](m′
2
(1+m′

2))

as is also written in the conclusion of (IApp).

10 2020/9/30

Now, what about the substitution? We have three substitutions,
σ1, σ2, and σ3. We want to return one substitution σ321 that com-
bines them all. By carefully inspecting the numbers of metavari-
ables of the three substitutions, σ321 is defined as the last premise
of (IApp) in Figure 3. The relationship of the three substitutions is
depicted in Figure 4.

We started the type inference of s1 s2 with m metavariables.
During the type inference of s1, the number of metavariables was
raised to m′′

1 , which was then reduced to m′
1 by σ1. During the

type inference of s2, the number of metavariables was raised to
m′′

2 , which was then reduced to m′
2 by σ2. Finally, we introduced

one more metavariable, raising the number of metavariables to
1 + m′

2, which was then reduced to m′
3 by σ3. To combine the

three substitutions, we first raise the number of metavariables from
m to some number (written as 1 +m′′′

2 in (IApp)) that takes all the
introduced metavariables during the type inference of s1 s2 into
account. Then, σ321 reduces it to m′

3.
At first sight, it is not immediately clear how to set the number

1 + m′′′
2 . In fact, if we did not employ the parallel relation of

substitutions, we had to devise the number by ourselves. With the
parallel relation of substitutions, it is mechanically determined by
the Agda type checker. From σ1[↓m

′′
1

m′
1

] and the inequality m′
1 ≤

m′′
2 , we can define σ′

1 in such a way that the substitution commutes
with lifting. (See the small parallelogram in Figure 4.)

σ′
1[↓m

′′′
2

m′′
2

](↑m
′′′
2

m′′
1
·) = ↑m

′′
2

m′
1

(σ1[↓m
′′
1

m′
1

](·))

Here, m′′′
2 is uniquely determined by the parallel relation m′′

1 ≤
m′′′

2 //m′
1 ≤ m′′

2 (one of the premises of (IApp)), which we
interpret as calculating m′′′

2 (output, red) from m′′
1 and m′

1 ≤
m′′

2 (inputs, blue). In this case, m′′′
2 can be calculated in fact as

m′′
1 +m′′

2−m′
1. However, specifying an exact number is not a good

idea, because we would then have to manipulate such a formula all
over the places. Rather, we specify only the parallel relation and
prove necessary relations as Agda type checker requires. Once we
obtain σ′

1 and m′′′
2 , we can compose it with σ2 to obtain σ21.

We apply the same procedure to σ21 andm′
2 ≤ 1+m′

2 to define
σ′
21. (The big parallelogram in Figure 4.)

σ′
21[↓1+m′′′

2

1+m′
2

](↑1+m′′′
2

m′′′
2

·) = ↑1+m′
2

m′
2

(σ21[↓m
′′′
2

m′
2

](·))

We have provided the concrete value 1 + m′′′
2 here, but we did

not have to. It can be uniquely determined by the parallel relation
m′′′

2 ≤ 1 +m′′′
2 //m′

2 ≤ 1 +m′
2. In fact, in the Agda program,

we name the number as 1+m2
′′′ suggesting that it has the value

1 +m′′′
2 , but it is merely an identifier whose value is deduced from

the parallel relation. Finally, we can compose σ′
21 and σ3 to obtain

σ321.
The deduction of σ321 from σ1, σ2, and σ3 is summarized in

mathematical form as follows.

σ3[↓1+m′
2

m′
3

](↑1+m′
2

m′
2

(σ2[↓m
′′
2

m′
2

](↑m
′′
2

m′
1

(σ1[↓m
′′
1

m′
1

](↑m
′′
1

m Γ(m))))))

= {definition of σ′
1}

σ3[↓1+m′
2

m′
3

](↑1+m′
2

m′
2

(σ2[↓m
′′
2

m′
2

](σ′
1[↓m

′′′
2

m′′
2

](↑m
′′′
2

m′′
1

(↑m
′′
1

m Γ(m))))))

= {definition of σ21, lifting fusion}
σ3[↓1+m′

2

m′
3

](↑1+m′
2

m′
2

(σ21[↓m
′′′
2

m′
2

](↑m
′′′
2

m Γ(m))))

= {definition of σ′
21}

σ3[↓1+m′
2

m′
3

](σ′
21[↓1+m′′′

2

1+m′
2

](↑1+m′′′
2

m′′′
2

(↑m
′′′
2

m Γ(m))))

= {definition of σ321, lifting fusion}
σ321[↓1+m′′′

2

m′
3

](↑1+m′′′
2

m Γ(m))

By transcripting the above scenario, we can define infer-App as
follows.

m

m1
′′

m1
′

m2
′′′

m2
′′

m2
′

1+m2
′′′

(1+m2
′′)

1+m2
′

m3
′

σ1

σ1
′

σ2

σ3

σ21

σ21
′

σ321

Figure 4. Relationship between substitutions in the application
case

infer-App : (m : N)→ {n : N}→
(Γ : Cxt {m} n)→ (s1 s2 : WellScoped n)→
untypable Γ (App s1 s2)

] Σ[m′′ ∈ N] Σ[m′ ∈ N] Σ[m≤m′′ ∈ m ≤ m′′]
Σ[σ ∈ AList TypeF m′′ m′] Σ[t ∈ Type m′]
Σ[w ∈WellTyped (applySubCxt≤ σ m≤m′′ Γ) t]
(erase w (App s1 s2) ×mgt σ Γ (App s1 s2) t)

We first make a recursive call to infer the type of s1.

infer-App m {n} Γ s1 s2
with infer m Γ s1

... | inj1 ill-s1 = –– s1 is ill-typed
inj1 (illtyped-App1 Γ s1 s2 ill-s1)

... | inj2 (m1
′′ , m1

′ , m≤m1
′′ , σ1 , t1 , w1 , eraseW1≡S1 , mgσ1)

If it is untypable, we propagate the untypability of s1 to the untypa-
bility of App s1 s2 (using illtyped-App1). Otherwise, we obtain a
tuple with the eight elements, in particular, the (most general) type
t1 for s1 and the substitution σ1.

We next apply σ1 to Γ and infer the type of s2 under the
substituted type environment.

with let
σ1Γ : Cxt n
σ1Γ = applySubCxt≤ σ1 m≤m1

′′ Γ
in infer m1

′ σ1Γ s2
... | inj1 ill-s2 = –– s2 is ill-typed

inj1 (illtyped-App2 Γ s1 s2 t1 m≤m1
′′ σ1 mgσ1 ill-s2)

... | inj2 (m2
′′ , m2

′ , m1
′≤m2

′′ , σ2 , t2 , w2 , eraseW2≡S2 , mgσ2)

Again, if it is untypable, we propagate the untypability of s2 to the
untypability of App s1 s2 (using illtyped-App2, which requires σ1

to be most general for s1). Otherwise, we obtain the (most general)
type t2 for s2 and the substitution σ2.

After the type inference of the two subterms, we allocate a new
metavariable and check whether σ2t1 unifies with t2⇒ t.

with let
t : Type (suc m2

′)
t = 〈〈 fromN m2

′ 〉〉 –– new type variable
m2

′≤1+m2
′ : m2

′ ≤ suc m2
′

m2
′≤1+m2

′ = n≤m+n 1 m2
′

σ2t1 : Type m2
′

σ2t1 = applySub≤ σ2 m1
′≤m2

′′ t1
in mgu (lift≤ m2

′≤1+m2
′ σ2t1) (lift≤ m2

′≤1+m2
′ t2⇒ t)

... | inj1 ill-unify = inj1 (illtyped-unify Γ s1 s2 t1 m≤m1
′′ m1

′≤m2
′′

σ1 mgσ1 σ2 t2 mgσ2 ill-unify)
... | inj2 (m3

′ , σ3 , mgσ3)

If it does not, we report the untypability of App s1 s2 (using
illtyped-unify, again requiring the two substitutions to be most gen-

11 2020/9/30

eral). Otherwise, we obtain the most general unifying substitution
σ3.

We next obtain the parallel relation.

= let
m2

′′′ = proj1 (σ→// σ1 m1
′≤m2

′′)
m1

′′≤m2
′′′ = proj1 (proj2 (σ→// σ1 m1

′≤m2
′′))

m1
′′≤m2

′′′//m1
′≤m2

′′ = proj2 (proj2 (σ→// σ1 m1
′≤m2

′′))

Given a substitution and an inequality, the function σ→// returns
(in a triple) the parallel relation that must hold together with the
lifted number of metavariables and the induced inequality. We can
now obtain σ21:

in let
σ21 : AList TypeF m2

′′′ m2
′

σ21 = σ2 +〈 m1
′′≤m2

′′′//m1
′≤m2

′′ 〉 σ1

m2
′≤1+m2

′ : m2
′ ≤ suc m2

′

m2
′≤1+m2

′ = n≤m+n 1 m2
′

1+m2
′′′ = proj1 (σ→// σ21 m2

′≤1+m2
′)

m2
′′′≤1+m2

′′′ = proj1 (proj2 (σ→// σ21 m2
′≤1+m2

′))
m2

′′′≤1+m2
′′′//m2

′≤1+m2
′ = proj2 (proj2 (σ→// σ21 m2

′≤1+m2
′))

from which we obtain the second parallel relation.
Finally, we return the result of the type inference.

in inj2 (1+m2
′′′ , m3

′ , m≤1+m2
′′′ , σ321 , σ3t ,

AppW1W2 , eraseAppW1W2≡AppS1S2 ,
mg-App s1 m≤m1

′′ σ1 t1 w1 eraseW1≡S1 mgσ1

s2 m1
′≤m2

′′ σ2 t2 w2 eraseW2≡S2 mgσ2

σ3 mgσ3)
where
σ3t : Type m3

′

σ3t = applySub σ3 t

The inequality m≤1+m2
′′′ can be easily shown from the inequali-

ties obtained during the type inference and the transitivity law. The
returned substitution σ321 is defined as follows.

σ321 : AList TypeF 1+m2
′′′ m3

′

σ321 = σ3 +〈m2
′′′≤1+m2

′′′//m2
′≤1+m2

′ 〉 σ21

The well-typed term AppW1W2 is again almost App σ3σ2w1

σ3w2, but we have to adjust their types. In particular, the type
of w1 is based on t1 but it has to be converted to the form t2
⇒ t using the correctness property of σ3. The situation is similar
for eraseAppW1W2≡AppS1S2. See the accompanying code for
details.

Finally, to show completeness, we exploit (in mg-App) the fact
that the three obtained substitutions are all most general ones.

6. Related Work
Formalization of type inference. Type inference has been for-
malized in various systems. Dubois and Ménissier-Morain (1999),
Naraschewski and Nipkow (1999), and Urban and Nipkow (2009)
formalized the algorithm W (Damas and Milner 1982) in Coq,
Isabelle/HOL, and Nominal Isabelle, respectively. They proved
soundness and completeness of the algorithm W. Their proofs are
more general than ours in that they handle let polymorphism, while
we handle only simply-typed λ-calculus. On the other hand, their
formalizations do not provide the correctness proof of the unifica-
tion algorithm, but are parameterized over the properties the uni-
fication must satisfy. Our formalization includes the correctness of
unification, which clarifies the interaction between the allocation of
new metavariables and substitution.

Garrigue (2015) proved in Coq correctness of type inference for
OCaml that includes structural polymorphism and recursion. His
proof is similar to ours in that the number of metavariables is used
to ensure termination. He used it as a termination measure, while
we exploit the structural recursion following McBride (2003). An-

other difference is that his proof is done using Coq tactics while our
proof specifies the proof term directly, which requires struggles for
clearer and simpler proofs.

Formalization of unification. The unification algorithm was first
formalized by Paulson (1985) in LCF. McBride (2003) formal-
ized unification via structural recursion with the observation that
the number of metavariables reduces as the unification proceeds.
The correctness of the unification algorithm is shown in (McBride
2003b). The unification algorithm in this paper is directly based
on McBride’s algorithm and its correctness proof. We extend
McBride’s work by implementing unification generically for any
data, rather than simple types as used in McBride’s presentation.

Ribeiro and Camarão (2015) formalized unification algorithm in
Coq following the classic textbook algorithm. They use the degree
of constraints, a pair of the number of metavariables and the size of
types in constraints, as a termination measure.

Metavariables in generic programming. We introduced metavari-
ables into generic programming by adopting the two-level types
presented by Sheard and Pasalic (2004), extended with additional
information on the number of metavariables. Similar approach was
taken by Hinze et al. (2004) to implement typed-indexed data types
in Haskell and van Noort et al. (2008) to implement rewriting rules
that contain metavariables.

Generic programming. The generic programming we adopted is
based on Regular (van Noort et al. 2008) and supports only the
sum-of-product type of data and one recursive position. More flexi-
ble framework includes PolyP (Jansson and Jeuring 1997) that sup-
ports one datatype parameter, Multirec (Rodriguez et al. 2009) that
supports multiple recursive positions, and Indexed functors (Löh
and Magalhães 2011) that support both. Magalhães and Löh (2012)
give a clear comparison between these approaches with implemen-
tation in Agda. In this paper, we have used the most basic approach.
It is an interesting future work to see if we can support more flex-
ible approaches. We expect it would not be very hard to support a
datatype parameter. As for multiple recursive positions, we would
have to somehow deal with multiple kinds of metavariables, one for
each recursive position, and mutual recursion based on the vector
of numbers of metavariables.

7. Conclusion
In this paper, we have presented the complete formalization of type
inference, including unification, and proved its soundness as well
as completeness in Agda. We first extended McBride’s unification
algorithm to work with generic data, so that the correctness of uni-
fication is established once and for all. We then formalized type
inference as a function from an untyped term to a well-typed term.
The parallel relation between two inequalities was the key to main-
taining the number of metavariables easily. The resulting type in-
ference function was summarized as typing rules that are intuitively
clear but reflect all the details of the underlying soundness proof
including the number of metavariables. Thanks to the generic pro-
gramming, we can extend the input language without reimplement-
ing unification.

As future work, we have already mentioned in the previous sec-
tion the extension to more expressive generic programming. As a
longer-term goal, we would like to formalize various static analy-
ses, which are often specified as type inference problems. For ex-
ample, Asai et al. (2014) formalized an offline partial evaluation,
but they assumed the input language was already staged. We could
augment their work by providing binding-time analysis before par-
tial evaluation.

12 2020/9/30

References
Altenkirch, T. “Integrated Verification in Type Theory,” Lecture notes for a

course at ESSLLI 96, Prague, 32 pages (August 1996).

Asai, K., L. Fennell, P. Thiemann, and Y. Zhang “A type theoretic
specification of partial evaluation,” Proceedings of the 2014 Symposium
on Principles and Practice of Declarative Programming (PPDP’14),
pp. 57–68 (September 2014).

Damas, L. and R. Milner “Principal type-schemes for functional programs,”
Proceedings of the 9th Annual ACM Symposium on Principles of
Programming Languages, pp. 207–212 (January 1982).

Dubois, C. and V. Ménissier-Morain “Certification of a type inference tool
for ML: Damas-Milner within Coq,” Journal of Automated Reasoning,
Vol. 23, No. 3, pp. 319–346 (November 1999).

Garrigue, J. “A Certified Implementation of ML with Structural Polymor-
phism and Recursive Types,” Mathematical Structures in Computer
Science, Vol. 25, No. 4, pp. 867–891, Cambridge University Press (May
2015).

Hinze, R., J. Jeuring, and A. Löh. “Type-indexed data types,” Science of
Computer Programming, Vol. 51, pp. 117–151, Elsevier (2004).

Jansson, P., and J. Jeuring “PolyP—a polytypic programming language
extension,” Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 470–482 (January 1997).

Leroy, X. “Polymorphic typing of an algorithmic language,” Research
Report RR-1778, INRIA, Rocquencourt (October 1992).

Löh, A., and J. P. Magalhães “Generic programming with indexed functors,”
Proceedings of the ACM SIGPLAN Workshop on Generic Programming
(WGP’11), pp. 1–12 (September 2011).

Magalhães, J. P. and A. Löh “A formal comparison of approaches to
datatype-generic programming,” Proceedings of the Fourth Workshop
on Mathematically Structured Functional Programming (MSFP 2012),
Electronic Proceedings in Theoretical Computer Science 76, pp. 50–67
(March 2012).

Martin-Löf, P. Intuitionistic Type Theory, Bibliopolis, Napoli (1984).

McBride, C. “First-order unification by structural recursion,” Journal of
Functional Programming, Vol. 13, No. 6, pp. 1061–1075, Cambridge
University Press (November 2003).

McBride, C. “First-order unification by structural recursion, correct-
ness proof” available from http://www.strictlypositive.org/
foubsr-website/, 8 pages (October 2003b).

McBride, C. “How to keep your neighbours in order,” Proceedings of
the 2014 ACM SIGPLAN International Conference on Functional
Programming (ICFP’14), pp. 297–309 (September 2014).

Naraschewski, W. and T. Nipkow “Type inference verified: algorithm W
in Isabelle/HOL,” Journal of Automated Reasoning, Vol. 23, No. 3,
pp. 299–318 (November 1999).

Nazareth, D., and T. Nipkow “Formal Verification of Algorithm W: The
Monomorphic Case,” In G. Goos, J. Hartmanis, J. van Leeuwen, J. von
Wright, J. Grundy, and J. Harrison, editors. Theorem Proving in Higher
Order Logics (LNCS 1125), pp. 331–345 (August 1996).

van Noort, T., A. Rodriguez Yakushev, S. Holdermans, J. Jeuring, and
B. Heeren “A lightweight approach to datatype-generic rewriting,”
Proceedings of the ACM SIGPLAN Workshop on Generic Programming
(WGP’08), pp. 13–24 (September 2008).

Norell, U. “Dependently typed programming in Agda,” In P. Koopman, R.
Plasmeijer, and D. Swierstra, editors, Advanced Functional Program-
ming (LNCS 5832), pp. 230–266 (2009).

Paulson, L. C. “Verifying the unification algorithm in LCF,” Science of
Computer Programming, Vol. 5, No. 2, pp. 143–169, Elsevier North-
Holland (June 1985).

Ribeiro, R., and C. Camarão “A mechanized textbook proof of a type
unification algorithm,” In M. Cornélio, and B. Roscoe, editors, Formal
Methods: Foundations and Applications (LNCS 9526), pp. 127–141
(September 2015).

Rodriguez Yakushev, A., S. Holdermans, A. Löh, and J. Jeuring “Generic
programming with fixed points for mutually recursive datatypes,”

Proceedings of the 2009 ACM SIGPLAN International Conference
on Functional Programming (ICFP’09), pp. 233–244 (August 2009).

Sheard, T., and E. Pasalic “Two-level types and parameterized modules,”
Journal of Functional Programming, Vol. 14, No. 5, pp. 547–587,
Cambridge University Press (September 2004).

Stump, A. Verified Functional Programming in Agda, New York: Associa-
tion for Computing Machinery and Morgan & Claypool (2016).

Urban, C. and T. Nipkow “Nominal verification of algorithm W,” In G.
Huet, J.-J. Lévy, and G. Plotkin, editors, From Semantics to Computer
Science, Essays in Honour of Gilles Kahn, pp. 363–382, Cambridge
University Press (2009).

13 2020/9/30

