
Chapter 5

Logical Relations for
Call-by-value Delimited
Continuations
Kenichi Asai1

Abstract: Logical relations, defined inductively on the structure of types, pro-
vide a powerful tool to characterize higher-order functions. They often enable
us to prove correctness of a program transformer written with higher-order func-
tions concisely. This paper demonstrates that the technique of logical relations
can be used to characterize call-by-value functions as well as delimited contin-
uations. Based on the traditional logical relations for call-by-name functions,
logical relations for call-by-value functions are first defined, whose CPS variant
is used to prove the correctness of an offline specializer for the call-by-valueλ-
calculus. They are then modified to cope with delimited continuations and are
used to establish the correctness of an offline specializer for the call-by-valueλ-
calculus with delimited continuation constructs, shift and reset. This is the first
correctness proof for such a specializer. Along the development, correctness of
the continuation-based and shift/reset-based let-insertion and A-normalization is
established.

5.1 INTRODUCTION

Whenever we build a program transformer, be it a compiler, an optimizer, or a
specializer, we need to establish its correctness. We have to show that the se-
mantics of a program does not change before and after the transformation. As
a program transformer gets sophisticated, however, it becomes harder to prove
its correctness. In particular, the non-trivial use of higher-order functions in the
transformer makes the correctness proof particularly difficult. A simple structural

1Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan; Email:
asai@is.ocha.ac.jp

63

induction on the input program does not usually work, because we can not easily
characterize their behavior.

The technique of logical relations [16] is one of the proof methods that is often
used in such a case. With the help of types, it enables us to define a set of relations
that captures necessary properties of higher-order functions. Notably, Wand [20]
used this technique to prove correctness of an offline specializer [14] in which
higher-order functions rather than closures were used for the representation of
abstractions. However, the logical relations used by Wand were for call-by-name
functions. They were used to prove the correctness of a specializer for the call-by-
nameλ-calculus, but are not directly applicable to the call-by-value languages.

In this paper, we demonstrate that the technique of logical relations can be
used to characterize call-by-value functions as well as delimited continuations.
We first modify Wand’s logical relations so that we can use them for call-by-value
functions. We then prove the correctness of an offline specializer for the call-by-
valueλ-calculus. It is written in continuation-passing style (CPS) and uses the
continuation-based let-insertion to avoid computation elimination/duplication.

It is well-known that by using delimited continuation constructs,shift andre-
set, introduced by Danvy and Filinski [7], it is possible to implement the let-
insertion in direct style [18]. We demonstrate that the correctness of this direct-
style specializer with the shift/reset-based let-insertion can be also established by
properly characterizing delimited continuations in logical relations.

Then, the specializer is extended to cope with shift and reset in the source
language. To this end, the specialization-time delimited continuations are used
to implement the delimited continuations in the source language. To character-
ize such delimited continuations, we define logical relations based on Danvy and
Filinski’s type system [6]. Thanks to the explicit reference to the types of con-
tinuations and the final result, we can establish the correctness of the specializer.
This is the first correctness proof for the offline specializer for the call-by-value
λ-calculus with shift and reset. The present author previously showed the correct-
ness of a similar offline specializer [3], but it produced the result of specialization
in CPS.

The contributions of this paper are summarized as follows:

• We show that the technique of logical relations can be used to characterize
call-by-value functions as well as delimited continuations.

• We show for the first time the correctness of the offline specializer for the
call-by-valueλ-calculus with shift and reset.

• Along the development, we establish the correctness of the continuation-based
let-insertion, the shift/reset-based let-insertion, the continuation-based A-nor-
malization [13], and the shift/reset-based A-normalization.

The paper is organized as follows. After showing preliminaries in Section 5.2,
the call-by-name specializer and its correctness proof by Wand are reviewed in
Section 5.3. We then show the logical relations for call-by-value functions in

64

Section 5.4, and use (a CPS variant of) them to prove the correctness of a spe-
cializer for the call-by-valueλ-calculus in Section 5.5. In Section 5.6, we trans-
form the specializer into direct style and prove its correctness. Then, we fur-
ther extend the specializer to cope with shift and reset. We show an interpreter
and an A-normalizer in Section 5.7, a specializer in Section 5.8, a type system
in Section 5.9, and logical relations with which the correctness is established in
Section 5.10. Related work is in Section 5.11 and the paper concludes in Sec-
tion 5.12. A complete proof of correctness of the offline specializer for shift and
reset is found in the technical report [4].

ACKNOWLEDGMENTS

Most of the work has been done while the author was visiting Northeastern Uni-
versity. Special thanks to Mitch Wand for hosting my stay as well as support
and encouragements. The use of de Bruijn levels to avoid the name generation
problem was suggested by Olivier Danvy.

5.2 PRELIMINARIES

The metalanguage we use is a left-to-rightλ-calculus extended with shift and reset
as well as datatype constructors. The syntax is given as follows:

M,K = x | λx.M | M M | ξk.M | 〈M〉 | n | M +1 |
Var(n) | Lam(n,M) | App(M,M) | Shift(n,M) | Reset(M) |
Lam(n,M) | App(M,M) | Shift(n,M) | Reset(M) |
Lam(n,M) | App(M,M) | Shift(n,M) | Reset(M)

ξk.M and〈M〉 represent shift and reset, respectively, and appear only later in the
paper. Datatype constructors are for representing the input and output terms to our
specializer. In this baselanguage, an integern is used to represent a variable. For
this purpose, the language contains an integer and an add-one operation. As usual,
we use overline and underline to indicate static and dynamic terms, respectively.
We assume that all the datatype constructors are strict. Among the metalanguage,
a value (ranged over by a metavariableV) is either a variable, an abstraction, an
integer, or one of constructors whose arguments are values.

When a specializer produces its output, it needs to generate fresh variables.
To make the presentation simple, we use so-called the de Bruijn levels [9] (not
indices). Define the following five strict operators:

var(m) = λn.Var(m)
lam(f) = λn.Lam(n, f (n+1))

app(f1, f2) = λn.App(f1n, f2n)
shift(f) = λn.Shift(n, f (n+1))
reset(f) = λn.Reset(f n)

They are used to represent a term parameterized with a variable name. Given a
termM in the de Bruijn level notation, we define the operation↓n M of obtaining

65

a concrete term as:↓n M = M n. Thus, we have:

↓3 (app(lam(λx. lam(λy.var(x))), lam(λy.var(y))))
= App(Lam(3,Lam(4,Var(3))),Lam(3,Var(3))) .

Since we can freely transform a term with de Bruijn levels into the one without,
we will use the former as the output of specializers.

Throughout this paper, we use three kinds of equalities between terms in the
metalanguage:= for definition or α-equality,∼n for β-equality under call-by-
name semantics, and∼v for β-equality under call-by-value semantics. The call-
by-valueβ-equality in the presence of shift and reset is defined by Kameyama and
Hasegawa [15, Fig. 2].

5.3 SPECIALIZER FOR CALL-BY-NAME λ-CALCULUS

In this section, we review the specializer for the call-by-nameλ-calculus and its
correctness proof using the technique of logical relations presented by Wand [20].

A specializer reduces expressions that are known (orstatic) at specialization
time and leaves unknown (ordynamic) expressions intact. Thus, it consists of
two parts: an interpreter for static expressions and a residualizer for dynamic
expressions. An interpreter for the input language is defined as follows:

I 1 [[Var(n)]]ρ = ρ(n)
I 1 [[Lam(n,M)]]ρ = λx.I 1 [[M]]ρ[x/n]

I 1 [[App(M1,M2)]]ρ = (I 1 [[M1]]ρ)(I 1 [[M2]]ρ)

whereρ[x/n] is the same environment asρ except thatρ(n) = x.
The residualizer is almost the identity function except for the use of de Bruijn

levels to avoid name clashes:

D1 [[Var(n)]]ρ = ρ(n)
D1 [[Lam(n,M)]]ρ = lam(λx.D1 [[M]]ρ[var(x)/n])

D1 [[App(M1,M2)]]ρ = app(D1 [[M1]]ρ,D1 [[M2]]ρ)

An offline specializer is given by putting the interpreter and the residualizer
together:

P 1 [[Var(n)]]ρ = ρ(n)
P 1 [[Lam(n,W)]]ρ = λx.P 1 [[W]]ρ[x/n]
P 1 [[Lam(n,W)]]ρ = lam(λx.P 1 [[W]]ρ[var(x)/n])

P 1 [[App(W1,W2)]]ρ = (P 1 [[W1]]ρ)(P 1 [[W2]]ρ)
P 1 [[App(W1,W2)]]ρ = app(P 1 [[W1]]ρ,P 1 [[W2]]ρ)

The specializer goes wrong if the input term is not well-annotated. Well-annotated-
ness of a term is specified as a binding-time analysis that, given an unannotated
term, produces a well-annotated term. Here, we show a type-based binding-time
analysis. Define binding-time types of expressions as follows:

τ = d | τ→ τ

66

An expression of typed denotes that the expression is dynamic, while an expres-
sion of typeτ → τ shows that it is a static function. We use a judgment of the
form A ` M : τ [W], which reads: under a type environmentA, a termM has a
binding-time typeτ and is annotated asW. The binding-time analysis is defined
by the following typing rules:

A[n : τ] ` Var(n) : τ [Var(n)]

A[n : σ] `M : τ [W]

A` Lam(n,M) : σ→ τ [Lam(n,W)]

A`M1 : σ→ τ [W1] A`M2 : σ [W2]

A` App(M1,M2) : τ [App(W1,W2)]

A[n : d] `M : d [W]
A` Lam(n,M) : d [Lam(n,W)]

A`M1 : d [W1] A`M2 : d [W2]
A` App(M1,M2) : d [App(W1,W2)]

To show the correctness of the specializer, Wand [20] uses the technique of
logical relations. Define logical relations between terms in the metalanguage by
induction on the structure of binding-time types as follows:

(M,M′) ∈ Rd ⇐⇒ I 1 [[↓n M]]ρid ∼n M′ for any largen (defined below)
(M,M′) ∈ Rσ→τ ⇐⇒ ∀(N,N′) ∈ Rσ. (M N,M′N′) ∈ Rτ

whereρid(n) = zn for all n. It relates free variables in the base- and metalanguage.
Since the logical relations are defined on open terms, we need to relate free vari-
ables in the base- and metalanguage in some way. We choose here to relate a
baselanguage variableVar(n) to a metalanguage variablezn.

In the definition ofRd, M is a metalanguage term in the de Bruijn level notation
that is either a value representing a baselanguage term or a term that is equal to (or
evaluates to) a value representing a baselanguage term in the underlying semantics
of the metalanguage (in this section, call-by-name).

The choice ofn in Rd needs a special attention. SinceM is possibly an open
term,n has to be chosen so that it does not capture free variables inM. We ensure
this property by the side condition “for any largen.” n is defined to be large ifn is
greater than any free variables in the baselanguage termM.

For environmentsρ andρ′, we say(ρ,ρ′) |= A iff (ρ(n),ρ′ (n)) ∈ RA(n) for all
n∈ dom(A), wheredom(A) is the domain ofA. Then, we can show the following
theorem by structural induction over types:

Theorem 5.1 (Wand [20]).If A`M : τ [W] and(ρ,ρ′) |= A, then
(P 1 [[W]]ρ,I 1 [[M]]ρ′) ∈ Rτ.

By instantiating it to an empty environmentρφ, we obtain the following corollary,
which establishes the correctness of specialization.

Corollary 5.2 (Wand [20]). If `M : d [W], thenI 1 [[↓0 (P 1 [[W]]ρφ)]]ρid ∼n I 1 [[M]]ρφ.

67

5.4 LOGICAL RELATIONS FOR CALL-BY-VALUE λ-CALCULUS

Define logical relations for the call-by-valueλ-calculus as follows:

(M,M′) ∈ Rd ⇐⇒ I 1 [[↓n M]]ρid ∼v M′ for any largen
(M,M′) ∈ Rσ→τ ⇐⇒ ∀(V,V ′) ∈ Rσ. (MV,M′V ′) ∈ Rτ

There are two differences from the logical relations in the previous section. First,
call-by-value equality∼v is used instead of call-by-name equality∼n in the def-
inition of Rd. Secondly,M andM′ are allowed to be inRσ→τ if they transform
only relatedvalues(rather than arbitrary terms) into related terms.

If we could prove Theorem 5.1 with this definition ofRτ, we would have
obtained as a corollary the correctness of the specializer in the call-by-value se-
mantics. However, the proof fails for static applications. In fact, the specializer is
not correct under the call-by-value semantics.

5.5 SPECIALIZER IN CPS

The correctness under the call-by-value semantics does not hold for the special-
izer in Section 5.3 because it may discard a non-terminating computation. The
standard method to recover the correctness is to performlet-insertion[5]. Since
let-insertion requires explicit manipulation of continuations, we first rewrite our
specializer into CPS as follows:

P 2 [[Var(n)]]ρκ = κ(ρ(n))
P 2 [[Lam(n,W)]]ρκ = κ(λx.λk.P 2 [[W]]ρ[x/n]k)
P 2 [[Lam(n,W)]]ρκ = κ(lam(λx.P 2 [[W]]ρ[var(x)/n]λx.x))

P 2 [[App(W1,W2)]]ρκ = P 2 [[W1]]ρλm.P 2 [[W2]]ρλn.mnκ
P 2 [[App(W1,W2)]]ρκ = P 2 [[W1]]ρλm.P 2 [[W2]]ρλn.κ(app(m,n))

We then replace the last rule with the following:

P 2 [[App(W1,W2)]]ρκ = P 2 [[W1]]ρλm.P 2 [[W2]]ρλn.

let(app(m,n), lam(λt.κ(var(t))))

wherelet(M1, lam(λt.M2)) is an abbreviation forapp(lam(λt.M2),M1). When-
ever an application is residualized, we insert a let-expression to residualize it ex-
actly once with a unique namet, and continue the rest of the specialization with
this name. Since the residualized application is not passed to the continuationκ,
it will never be discarded even ifκ discards its argument.

The let-insertion technique can be regarded as performing A-normalization
[13] on the fly during specialization. If we extract the rules for variables, dynamic
abstractions, and dynamic applications fromP 2, we obtain the following one-pass
A-normalizer written in CPS [13]:

A1 [[Var(n)]]ρκ = κ(ρ(n))
A1 [[Lam(n,M)]]ρκ = κ(lam(λx.A1 [[M]]ρ[var(x)/n]λx.x))

A1 [[App(M1,M2)]]ρκ = A1 [[M1]]ρλm.A1 [[M2]]ρλn.
let(app(m,n), lam(λt.κ(var(t))))

68

We now want to show the correctness of the specializerP 2 under the call-
by-value semantics. Namely, we want to showI 1 [[↓0 (P 2 [[W]]ρφ λx.x)]]ρid ∼v

I 1 [[M]]ρφ along the similar story as we did in Section 5.3. Let us define the base
caseRd as follows:

(M,M′) ∈ Rd ⇐⇒ I 1 [[↓n M]]ρid ∼v M′ for any largen .

Then, we want to show(P 2 [[W]]ρφ λx.x,I 1 [[M]]ρφ) ∈ Rd with a suitable defini-
tion of Rσ→τ. To prove it, we first generalize the statement to make induction
work. Rather than proving only the case where environments and continuations
are the empty ones, we prove something like:

(P 2 [[W]]ρλv.K,(λv′.K′)(I 1 [[M]]ρ′)) ∈ Rτ

for some suitableρ, ρ′, λv.K, andλv′.K′. SinceI 1 is written in direct style, we
introduce its continuation as a form of a direct application.

Now, how can we defineRσ→τ? Unlike Section 5.3, it is not immediately clear
how to defineRσ→τ because the specializer is written in CPS. We need to relate
P 2 [[W]]ρλv.K and(λv′.K′)(I 1 [[M]]ρ′) properly. To do so, we need to character-
ize precisely the two continuations,λv.K andλv′.K′, and the final results. Going
back to the definition ofP 2, we notice two things:

• P 2 [[W]]ρλv.K as a whole returns a dynamic expression.

• λv.K returns a dynamic expression, given some valuev.

In ordinary CPS programs, the return type of continuations is polymorphic. It can
be of any type, usually referred to as a typeAnswer. Here, we used continuations
in a non-standard way, however. We instantiated theAnswertype into a type of
dynamic expressions and used it to construct dynamic expressions.

Taking into account that the type of dynamic expressions isd, the above ob-
servation leads us to the following definition of logical relations:

(M,M′) ∈ Rd ⇐⇒ I 1 [[↓n M]]ρid ∼v M′ for any largen
(M,M′) ∈ Rσ→τ ⇐⇒ ∀(V,V ′) ∈ Rσ. ∀(λv.K,λv′.K′) |= τ ; d.

(MV λv.K,(λv′.K′)(M′V ′)) ∈ Rd

where(λv.K,λv′.K′) |= τ ; d is simultaneously defined as follows:

(λv.K,λv′.K′) |= τ ; d ⇐⇒ ∀(V,V ′) ∈ Rτ. ((λv.K)V,(λv′.K′)V ′) ∈ Rd

Intuitively, (λv.K,λv′.K′) |= τ ; d means thatλv.K andλv′.K′ are related con-
tinuations that, given related values of typeτ, produce related results of typed.
Using this definition,(M,M′) ∈ Rσ→τ states thatM and M′ are related if they
produce related results of typed, given related values of typeσ and related con-
tinuations of typeτ ; d. In the following, we use; for the type of continuations.

With this definition of logical relations, we can prove the correctness ofP 2

under the call-by-value semantics.

69

Theorem 5.3.If A`M : τ [W], (ρ,ρ′) |= A, and(λv.K,λv′.K′) |= τ ; d, then
(P 2 [[W]]ρλv.K,(λv′.K′)(I 1 [[M]]ρ′)) ∈ Rd.

The proof of this theorem is by induction on the structure of the proof ofA `
M : τ [W]. Even thoughP 2 is written in CPS, the induction does work thanks to
the explicit reference to the types of continuations and the final result. The proof
proceeds in a CPS manner. In particular, the cases for (both static and dynamic)
applications go from left to right. We use the induction hypotheses for the function
part and the argument part in this order.

By instantiating the theorem to the case where both the environment and the
continuation are empty, we obtain the following corollary that establishes the cor-
rectness of a specializer using the continuation-based let-insertion:

Corollary 5.4. If `M : d [W], thenI 1 [[↓0 (P 2 [[W]]ρφ λx.x)]]ρid ∼v I 1 [[M]]ρφ.

If we annotate the input to the specializer completely dynamic, the specializer be-
haves exactly the same as the A-normalizer. Thus, the theorem can be instantiated
to the following corollary, which proves the correctness of the continuation-based
A-normalization.

Corollary 5.5. I 1 [[↓0 (A1 [[M]]ρφ λx.x)]]ρid ∼v I 1 [[M]]ρφ for any closedM.

5.6 SPECIALIZER IN DIRECT STYLE

In this section, we present a specializer written in direct style and show its cor-
rectness under the call-by-value semantics. Since we have already established the
correctness of a specializer written in CPS in the previous section, the develop-
ment in this section is easy. Roughly speaking, we transform the results in the
previous sectionback to direct style[8]. During this process, we use the first-
class delimited continuation constructs,shiftandreset, to cope with non-standard
use of continuations. Intuitively, shift captures the current continuation up to its
enclosing reset [7]. Here is the definition of the specializer written in direct style:

P 3 [[Var(n)]]ρ = ρ(n)
P 3 [[Lam(n,W)]]ρ = λx.P 3 [[W]]ρ[x/n]
P 3 [[Lam(n,W)]]ρ = lam(λx.〈P 3 [[W]]ρ[var(x)/n]〉)

P 3 [[App(W1,W2)]]ρ = (P 3 [[W1]]ρ)(P 3 [[W2]]ρ)
P 3 [[App(W1,W2)]]ρ = ξκ. let(app(P 3 [[W1]]ρ,P 3 [[W2]]ρ), lam(λt.κ(var(t))))

As in the previous section, we obtain the one-pass A-normalizer written in
direct style with shift and reset [3] by extracting dynamic rules fromP 3:

A2 [[Var(n)]]ρ = ρ(n)
A2 [[Lam(x,M)]]ρ = lam(λx.〈A2 [[M]]ρ[var(x)/n]〉)

A2 [[App(M1,M2)]]ρ = ξκ. let(app(A2 [[M1]]ρ,A2 [[M2]]ρ), lam(λt.κ(var(t))))

To define suitable logical relations for the specializer written in direct style
(with shift and reset), we need to correctly handle delimited continuations. This

70

is done by observing the exact correspondence between continuations in the pre-
vious section and delimited continuations in this section. In particular, we type
the result of the delimited continuations asd.

Logical relations for the direct-style specializer with delimited continuations
are defined as follows:

(M,M′) ∈ Rd ⇐⇒ I 1 [[↓n M]]ρid ∼v M′ for any largen
(M,M′) ∈ Rσ→τ ⇐⇒ ∀(V,V ′) ∈ Rσ.∀(λv.K,λv′.K′) |= τ ; d.

(〈(λv.K)(MV)〉,(λv′.K′)(M′V ′)) ∈ Rd

where(λv.K,λv′.K′) |= τ ; d is simultaneously defined as follows:

(λv.K,λv′.K′) |= τ ; d ⇐⇒ ∀(V,V ′) ∈ Rτ. (〈(λv.K)V〉,(λv′.K′)V ′) ∈ Rd

Then, the correctness of the specializer is stated as follows:

Theorem 5.6.If A`M : τ [W], (ρ,ρ′) |= A, and(λv.K,λv′.K′) |= τ ; d, then
(〈(λv.K)(P 3 [[W]]ρ)〉,(λv′.K′)(I 1 [[M]]ρ′)) ∈ Rd.

Although both the specializer and the interpreter are written in direct style, the
proof proceeds in a CPS manner. In particular, the cases for applications go from
left to right, naturally reflecting the call-by-value semantics.

By instantiating the theorem to the case where both the environment and the
continuation are empty, we obtain the following corollary that establishes the cor-
rectness of a specializer using the shift/reset-based let-insertion:

Corollary 5.7. If `M : d [W], thenI 1 [[↓0 〈P 3 [[W]]ρφ〉]]ρid ∼v I 1 [[M]]ρφ.

As before, if we annotate the input to the specializer completely dynamic, the
specializer behaves exactly the same as the A-normalizer. Thus, the theorem can
be instantiated to the following corollary, which proves the correctness of the
direct-style A-normalization.

Corollary 5.8. I 1 [[↓0 〈A2 [[M]]ρφ〉]]ρid ∼v I 1 [[M]]ρφ for any closedM.

5.7 INTERPRETER AND A-NORMALIZER FOR SHIFT AND RESET

So far, shift and reset appeared only in the metalanguage. In the following sec-
tions, we develop a specializer written in direct style that can handle shift and
reset in the baselanguage. We first define an interpreter, a residualizer, and an
A-normalizer for the call-by-valueλ-calculus with shift and reset. We then try to
combine the interpreter and the A-normalizer to obtain a specializer in the next
section. Here is the interpreter written in direct style:

I 2 [[Var(n)]]ρ = ρ(n)
I 2 [[Lam(n,M)]]ρ = λx.I 2 [[M]]ρ[x/n]

I 2 [[App(M1,M2)]]ρ = (I 2 [[M1]]ρ)(I 2 [[M2]]ρ)
I 2 [[Shift(n,M)]]ρ = ξk.I 2 [[M]]ρ[k/n]

I 2 [[Reset(M)]]ρ = 〈I 2 [[M]]ρ〉

71

We used shift and reset operations themselves to interpret shift and reset expres-
sions. A residualizer is defined as follows:

D2 [[Var(n)]]ρ = ρ(n)
D2 [[Lam(n,M)]]ρ = lam(λx.D2 [[M]]ρ[var(x)/n])

D2 [[App(M1,M2)]]ρ = app(D2 [[M1]]ρ,D2 [[M2]]ρ)
D2 [[Shift(n,M)]]ρ = shift(λk.D2 [[M]]ρ[var(k)/n])

D2 [[Reset(M)]]ρ = reset(D2 [[M]]ρ)

It simply renames bound variables and keeps other expressions unchanged. As be-
fore, this residualizer is not suitable for specializers. We instead use the following
A-normalizer:

A3 [[Var(n)]]ρ = ρ(n)
A3 [[Lam(n,M)]]ρ = lam(λx.〈A3 [[M]]ρ[var(x)/n]〉)

A3 [[App(M1,M2)]]ρ = ξk. let(app(A3 [[M1]]ρ,A3 [[M2]]ρ), lam(λt.k(var(t))))
A3 [[Shift(n,M)]]ρ = shift(λk.〈A3 [[M]]ρ[var(k)/n]〉)

A3 [[Reset(M)]]ρ = reset(〈A3 [[M]]ρ〉)

It replaces all the application expressions in the body of abstractions, shift expres-
sions, and reset operations with a sequence of let-expressions.

5.8 SPECIALIZER FOR SHIFT AND RESET

In this section, we show a specializer for the call-by-valueλ-calculus with shift
and reset. Our first attempt is to combine the interpreter and the A-normalizer as
we did before for the calculi without shift and reset:

P 4 [[Var(n)]]ρ = ρ(n)
P 4 [[Lam(n,W)]]ρ = λx.P 4 [[W]]ρ[x/n]
P 4 [[Lam(n,W)]]ρ = lam(λx.〈P 4 [[W]]ρ[var(x)/n]〉)

P 4 [[App(W1,W2)]]ρ = (P 4 [[W1]]ρ)(P 4 [[W2]]ρ)
P 4 [[App(W1,W2)]]ρ = ξk. let(app(P 4 [[W1]]ρ,P 4 [[W2]]ρ), lam(λt.k(var(t))))

P 4 [[Shift(n,W)]]ρ = ξk.P 4 [[W]]ρ[k/n]
P 4 [[Shift(n,W)]]ρ = shift(λk.〈P 4 [[W]]ρ[var(k)/n]〉)

P 4 [[Reset(W)]]ρ = 〈P 4 [[W]]ρ〉
P 4 [[Reset(W)]]ρ = reset(〈P 4 [[W]]ρ〉)

Although this specializer does seem to work for carefully annotated inputs, it is
hard to specify the well-annotated term as a simple binding-time analysis. The
difficulty comes from the inconsistency between the specialization-time continu-
ation and the runtime continuation.

In the rule for the static shift, a continuation is grabbed at specialization time,
which means that we implicitly assume the grabbed continuation coincides with
the actual continuation at runtime. This was actually true for the interpreter: we
implemented shift in the baselanguage using shift in the metalanguage. In the

72

specializer, however, the specialization-time continuation does not always coin-
cide with the actual continuation. To be more specific, in the rule for dynamic
abstractions, we specialize the bodyW in a static reset (i.e., in the empty contin-
uation) to perform A-normalization, but the actual continuation at the time when
W is executed is not necessarily the empty one. Rather, it is the one when the
abstraction is applied at runtime.

Given that the specialization-time continuation is not always consistent with
the actual one, we have to make sure that the continuation is captured statically
only when it represents the actual one. Furthermore, we have to make sure that
whenever shift is residualized, its enclosing reset is also residualized. One way to
express this information in the type system would be to split all the typing rules
into two, one for the case when the specialization-time continuation and the actual
continuation coincide (or, the continuation is known, static) and the other for the
case when they do not (the continuation is unknown, dynamic). We could then
statically grab the continuation only when it represents the actual one.

However, this solution leads to an extremely weak specialization. Unless an
enclosing reset is known at specialization time, we cannot grab continuations stat-
ically. Thus, under dynamic abstractions, no shift operation is possible at special-
ization time. Furthermore, because we use a type-based binding-time analysis,
it becomes impossible to performanyspecialization under dynamic abstractions.
Remember that a type system does not tell us what subexpressions appear in a
given expression, but only the type of the given expression. From a type system,
we cannot distinguish the expression that does not contain any shift expressions
from the one that does. Thus, even ifW1 turns out to have a static function type
in App(W1,W2) (and thus it appears that this application can be performed stati-
cally), we cannot actually perform this application, because the toplevel operator
of W1 might be a shift operation that passes a function to the grabbed continua-
tion. In other words, we cannot determine the binding-time ofApp(W1,W2) from
the binding-time ofW1, which makes it difficult to construct a simple type-based
binding-time analysis.

The solution we employ takes a different approach. We maintain the consis-
tency between specialization-time continuations and actual onesall the time. In
other words, we make the continuation always static. The modified specializer is
presented as follows:

P 5 [[Var(n)]]ρ = ρ(n)
P 5 [[Lam(n,W)]]ρ = λx.P 5 [[W]]ρ[x/n]
P 5 [[Lam(n,W)]]ρ = lam(λx.shift(λk.〈reset(app(var(k),P 5 [[W]]ρ[var(x)/n]))〉))

P 5 [[App(W1,W2)]]ρ = (P 5 [[W1]]ρ)(P 5 [[W2]]ρ)
P 5 [[App(W1,W2)]]ρ = ξk. reset(let(app(P 5 [[W1]]ρ,P 5 [[W2]]ρ), lam(λt.k(var(t)))))

P 5 [[Shift(n,W)]]ρ = ξk.P 5 [[W]]ρ[k/n]
P 5 [[Shift(n,W)]]ρ = ξk.P 5 [[W]]ρ[lam(λv.〈k(var(v))〉)/n]

P 5 [[Reset(W)]]ρ = 〈P 5 [[W]]ρ〉
There are four changes fromP 4. The first and the most important change is in the
rule for dynamic abstractions. Rather than specializing the bodyW of a dynamic

73

abstraction in the empty context, we specialize it in the contextreset(app(var(k), ·)).
This specialization-time continuationreset(app(var(k), ·)) turns out to be consis-
tent with the runtime continuation, because the variablek is bound in the dynamic
shift placed directly under the dynamic abstraction and represents the continua-
tion when the abstraction is applied at runtime.

The second change is in the rule for dynamic applications where dynamic reset
is inserted around the residualized let-expression. The third change is in the rule
for dynamic shift. Rather than residualizing a dynamic shift, which requires resid-
ualization of the corresponding reset, the current continuation is grabbed and it is
turned into a dynamic expression viaη-expansion. Finally, the rule for dynamic
reset is removed since all the shift operations are taken care of during special-
ization time, and there is no need to residualize reset. (This does not necessarily
mean that the result of specialization does not contain any reset expressions. Reset
is residualized in the rule for dynamic abstractions and applications.)

These changes not only define a correct specializer but result in a quite pow-
erful one. It can now handlepartially static continuations. Consider the term
Lam(f ,Lam(x,App(Var(f),Shift(k,App(Var(k),App(Var(k),Var(x))))))). (This
term is well-annotated in the type system shown in the next section.) When we
specialize this term, the continuationk grabbed byShift(k, · · ·) is partially static:
we know that the first thing to do whenk is applied is to pass its argument to
f , but the computation that should be performed after that is unknown. It is the
continuation whenLam(x, · · ·) is applied to an argument. Even in this case,P 5

can expand this partial continuation into the result of specialization. By naming
the unknown continuationh, P 5 produces the following output (after removing
unnecessary dynamic shift and inlining the residualized let-expressions):

lam(λ f . lam(λx.shift(λh.
reset(app(var(h),app(var(f), reset(app(var(h),app(var(f),var(x)))))))))) .

Observe that the partial continuationreset(app(var(h),app(var(f), ·))) is expanded
twice in the result. Iff were static, we could have been able to perform further
specialization, exploiting the partially static information of the continuation.

On the other hand, the above changes cause an interesting side-effect to the
result of specialization: all the residualized lambda abstractions now have a ‘stan-
dardized’ formlam(λx.shift(λk. · · ·)) (and this is the only place where shift is
residualized). In particular, even when we specializeLam(x,W) where shift is
not used during the evaluation ofW, the residualized abstraction has typically the
form lam(λx.shift(λk. reset(app(var(k),M)))) wherek does not occur free inM.
(If let-expressions are inserted, the result becomes somewhat more complicated.)
If we usedP 3 instead, we would have obtained the equivalent but simpler result:
lam(λx.M). In other words,P 5 is not a conservative extension ofP 3.

A question then is whether it is possible to obtain the latter result on the fly
using P 5 with some extra work. We expect that it is not likely. As long as a
simple type-based binding-time analysis is employed, it is impossible to tell if
the execution of the body of a dynamic abstraction includes any shift operations.
So, unless we introduce some extra mechanisms to keep track of this information,

74

there is no way to avoid the insertion of a dynamic shift in the rule for dynamic
abstractions. Then, rather than making the specializer complicated, we would
employ a simple post-processing to remove unnecessary shift expressions.

5.9 TYPE SYSTEM FOR SHIFT AND RESET

Since our proof technique relies on the logical relations, we need to define a type
system for the call-by-valueλ-calculus with shift and reset to prove the correct-
ness ofP 5. In this section, we briefly review Danvy and Filinski’s type system
[6]. More thorough explanation is found in [3, 6].

In the presence of first-class (delimited) continuations, we need to explicitly
specify the types of continuations and the final result. For this purpose, Danvy
and Filinski use a judgment of the formA,α ` M : τ,β [W]. It reads: under the
type assumptionA, an expressionM has a typeτ in a continuation of typeτ ; α
and the final result is of typeβ. Since we use this type system as the static part of
our binding-time analysis, we decorate it with[W] to indicate thatM is annotated
asW. If M does not contain any shift operations, the typesα andβ are always the
same, namely, theAnswertype. In the presence of shift and reset, however, they
can be different and of any type.

The type of functions also needs to include the types of continuations and the
final result. It has the form:σ/α → τ/β. It is a type of functions that receive an
argument of typeσ and returns a value of typeτ to a continuation of typeτ ; α
and the final result is of typeβ. As a result, types are specified as follows:

τ = d | τ/τ→ τ/τ .

Here goes the type system:

A[n : τ],α ` Var(n) : τ,α [Var(n)]

A[n : σ],α `M : τ,β [W]

A,δ ` Lam(n,M) : σ/α→ τ/β,δ [Lam(n,W)]

A,σ `M : σ,τ [W]

A,α ` Reset(M) : τ,α [Reset(W)]

A,δ `M1 : σ/α→ τ/ε,β [W1]
A,ε `M2 : σ,δ [W2]

A,α ` App(M1,M2) : τ,β [App(W1,W2)]

A[n : τ/δ→ α/δ],σ `M : σ,β [W]

A,α ` Shift(n,M) : τ,β [Shift(n,W)]

The above type system is a generalization of the standard type system where
types of continuations are made explicit. In Section 5.6, the result type of contin-
uations and the type of final results were alwaysd. In the above type system, it
means that a judgment had always the formA,d ` M : τ,d [W] and the function
type had always the formσ/d→ τ/d. So if we write them asA `M : τ [W] and
σ → τ, respectively, we obtain exactly the same type system as the one for the
ordinaryλ-calculus (the three static rules shown in Section 5.3).

The dynamic rules can be obtained by simply replacing all the static function
types withd (and types that occur within the function type). The dynamic rules

75

are as follows:

A[n : d],d `M : d,d [W]
A,δ ` Lam(n,M) : d,δ [Lam(n,W)]

A[n : d],σ `M : σ,β [W]
A,d ` Shift(n,M) : d,β [Shift(n,W)]

A,δ `M1 : d,β [W1] A,d `M2 : d,δ [W2]
A,d ` App(M1,M2) : d,β [App(W1,W2)]

5.10 LOGICAL RELATIONS FOR SHIFT AND RESET

In this section, we define the logical relations for the call-by-valueλ-calculus
with shift and reset, which are used to prove the correctness of the specializerP 5

presented in Section 5.8. They are the generalization of the logical relations in
Section 5.6 in that the types of the final result and the result of continuations are
not restricted tod.

(M,M′) ∈ Rd ⇐⇒ I 1 [[↓n M]]ρid ∼v M′ for any largen
(M,M′) ∈ Rσ/α→τ/β ⇐⇒ ∀(V,V ′) ∈ Rσ.∀(λv.K,λv′.K′) |= τ ; α.

(〈(λv.K)(MV)〉,〈(λv′.K′)(M′V ′)〉) ∈ Rβ

where(λv.K,λv′.K′) |= τ ; α is simultaneously defined as follows:

(λv.K,λv′.K′) |= τ ; α ⇐⇒ ∀(V,V ′) ∈ Rτ. (〈(λv.K)V〉,〈(λv′.K′)V ′〉) ∈ Rα

Then, the correctness of the specializer is stated as follows:

Theorem 5.9.If A,α ` M : τ,β [W], (ρ,ρ′) |= A, and (λv.K,λv′.K′) |= τ ; α,
then(〈(λv.K)(P 5 [[W]]ρ)〉,〈(λv′.K′)(I 2 [[M]]ρ′)〉) ∈ Rβ.

By instantiating the theorem to the case where both the environment and the con-
tinuation are empty, we obtain the following corollary that establishes the correct-
ness of a direct-style specializer that can handle shift and reset:

Corollary 5.10. If d `M : d,d [W], thenI 2 [[↓0 〈P 5 [[W]]ρφ〉]]ρid ∼v 〈I 2 [[M]]ρφ〉.
The complete proof of the theorem is found in the technical report [4].

5.11 RELATED WORK

This work extends our earlier work [3] where we presented offline specializers for
λ-calculus with shift and reset that produced the output in CPS. The present work
is a direct-style account of the previous work, but it contains non-trivial definition
of logical relations for shift and reset. We also presented theonlinespecializers
for theλ-calculus with shift and reset [2]. However, their correctness has not been
formally proved.

Thiemann [17] presented an offline partial evaluator for Scheme including
call/cc. In his partial evaluator,call/cc is reduced if the captured continuation and
the body ofcall/cc are both static. This is close to our first attempt in Section 5.8.

76

Our solution is more liberal and reduces more continuation-capturing constructs,
but with a side-effect that all the residualized abstractions include a toplevel shift,
which could be removed by a simple post-processing. More recently, Thiemann
[19] showed a sophisticated effect-based type system to show the equivalence
of the continuation-based let-insertion and the state-based let-insertion. His type
system captures the information on the let-residualized code as an effect. It might
be possible to extend his framework to avoid unnecessary shift at the front of
dynamic abstractions on the fly.

The correctness proof for offline specializers using the technique of logical
relations appears in Jones et al. [14, Chapter 8]. Wand [20] used it to prove the
correctness of an offline specializer for the call-by-nameλ-calculus. The present
work is a non-trivial extension of his work to cope with delimited continuations.
Wand’s formulation was based on substitution, but we used the environment-
based formulation, which is essentially the same but is more close to the im-
plementation.

Filinski presented normalization-by-evaluation algorithms for the call-by-value
λ-calculus [10] and the computationalλ-calculus [11]. He showed their correct-
ness denotationally using logical relations. The same framework is extended to
the untypedλ-calculus by Filinski and Rohde [12].

The type system used in this paper is due to Danvy and Filinski [6]. A sim-
ilar type system is studied by Ariola, Herbelin, and Sabry [1], which explicitly
mentions the type of continuations.

5.12 CONCLUSION

This paper demonstrated that logical relations can be defined to characterize not
only call-by-name higher-order functions but also call-by-value functions as well
as delimited continuations. They were used to show the correctness of various of-
fline specializers, including the one for the call-by-valueλ-calculus with shift and
reset. Along the development, we established the correctness of the continuation-
based let-insertion, the shift/reset-based let-insertion, the continuation-based A-
normalization, and the shift/reset-based A-normalization.

REFERENCES

[1] Ariola, Z. M., H. Herbelin, and A Sabry “A Type-Theoretic Foundation of Continu-
ations and Prompts,”Proceedings of the ninth ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP’04), pp. 40–53 (September 2004).

[2] Asai, K. “Online Partial Evaluation for Shift and Reset,”ACM SIGPLAN Workshop
on Partial Evaluation and Semantics-Based Program Manipulation (PEPM ’02),
pp. 19–30 (January 2002).

[3] Asai, K. “Offline Partial Evaluation for Shift and Reset,”ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-Based Program Manipulation (PEPM ’04),
pp. 3–14 (August 2004).

77

[4] Asai, K. “Logical Relations for Call-by-value Delimited Continuations,” Technical
Report OCHA-IS 06-1, Department of Information Sciences, Ochanomizu University
(April 2006).

[5] Bondorf, A., and O. Danvy “Automatic autoprojection of recursive equations with
global variables and abstract data types,”Science of Computer Programming, Vol. 16,
pp. 151–195, Elsevier (1991).

[6] Danvy, O., and A. Filinski “A Functional Abstraction of Typed Contexts,” Technical
Report 89/12, DIKU, University of Copenhagen (July 1989).

[7] Danvy, O., and A. Filinski “Abstracting Control,”Proceedings of the 1990 ACM Con-
ference on Lisp and Functional Programming, pp. 151–160 (June 1990).

[8] Danvy, O., and J. L. Lawall “Back to Direct Style II: First-Class Continuations,”
Proceedings of the 1992 ACM Conference on Lisp and Functional Programming,
pp. 299–310 (June 1992).

[9] de Bruijn, N. G. “Lambda Calculus Notation with Nameless Dummies, a Tool for
Automatic Formula Manipulation, with Application to the Church-Rosser Theorem,”
Indagationes Mathematicae, Vol. 34, pp. 381–392 (1972).

[10] Filinski, A. “A Semantic Account of Type-Directed Partial Evaluation,” In G. Na-
dathur, editor,Principles and Practice of Declarative Programming (LNCS 1702),
pp. 378–395 (September 1999).

[11] Filinski, A. “Normalization by Evaluation for the Computational Lambda-Calculus,”
In S. Abramsky, editor,Typed Lambda Calculi and Applications (LNCS 2044),
pp. 151–165 (May 2001).

[12] Filinski, A., and H. K. Rohde “A Denotational Account of Untyped Normalization by
Evaluation,” In I. Walukiewicz, editor,Foundations of Software Science and Compu-
tation Structures (LNCS 2987), pp. 167–181 (March 2004).

[13] Flanagan, C., A. Sabry, B. F. Duba, and M. Felleisen “The Essence of Compiling with
Continuations,”Proceedings of the ACM SIGPLAN ’93 Conference on Programming
Language Design and Implementation (PLDI), pp. 237–247 (June 1993).

[14] Jones, N. D., C. K. Gomard, and P. SestoftPartial Evaluation and Automatic Program
Generation, New York: Prentice-Hall (1993).

[15] Kameyama, Y., and M. Hasegawa “A Sound and Complete Axiomatization of Delim-
ited Continuations,”Proceedings of the eighth ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP’03), pp. 177–188 (August 2003).

[16] Mitchell, J. C.Foundations for Programming Languages, Cambridge: MIT Press
(1996).

[17] Thiemann, P. “Towards Partial Evaluation of Full Scheme,”Proceedings of Reflec-
tion’96, pp. 105–115 (April 1996).

[18] Thiemann, P. J. “Cogen in Six Lines,”Proceedings of the ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP’96), pp. 180–189 (May 1996).

[19] Thiemann, P. “Continuation-Based Partial Evaluation without Continuation,” In R.
Cousot, editor,Static Analysis (LNCS 2694), pp. 366–382 (June 2003).

[20] Wand, M. “Specifying the Correctness of Binding-Time Analysis,”Journal of Func-
tional Programming, Vol. 3, No. 3, pp. 365–387, Cambridge University Press (July
1993).

78

