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Abstract

We show a direct implementation shift/reset in the Caml Light system. This implementa-
tion enables us to program wighift/reset in a typed setting easily. The implementation supports
the optimization at return time employed in the original ZIMbstract machine. We show various
execution examples together with their types. The impldatem is expected to promote the use of
delimited control operators in practice.

1 Introduction

Although it is widely recognized that the delimited control operators arailisefany situations, imple-
mentations okhift/reset, especiallydirect implementations in &ped setting, have not been popular
so far. To break this situation, we presented a direct implementatiehidft /reset in the MinCaml|
compiler [SumO05] in our previous work [MAQ09]. Since itimplements a type sydteat handles answer
types explicitly, it enables us to execute various interesting examples. ldowestriction of the syntax

of MinCaml prohibits us from writing more complex programs. For example, Wagt to write a partial
evaluator that useshift/reset for let-insertion [Asa07], we need the following data type to represent
an abstract syntax tree:

type t = Var of string | Lam of string * t | App of t * t
| Shift of string * t | Reset of t | Let of string * t * t

However, since MinCaml does not support user-defined data typesannot define such a new type
unless we extend the MinCaml compiler itself. Additionally, a lack of garbafleatmn in MinCaml
prevents us from executing large programs.

In this paper, we present a direct implementatiorshift/reset in the Caml Light system, a
lightweight and portable implementation of the Caml language [Ler97]. Camt isgith enough to run
various interesting programs, yet it is simple enough to add new languaigeds like delimited control
operators. We will demonstrate various execution examples and showvit\dwkis like to program with
typed delimited-control operators in practice.

Overview In Section 2, we introduce the delimited control operati$ft/reset. In Section 3,

we outline the Caml Light system and the ZINC abstract machine, a coreroflGght. The direct
implementation okhift/reset in Caml Light is described in Section 4. Various execution examples
are shown in Section 5. We show related work in Section 6. The papeludasdn Section 7.

2 Shift and Reset

The delimited control operatoeshift andreset are proposed by Danvy and Filinski [DF90]. Intu-
itively, shift captures the current continuation arebet delimits the continuation captured bjift.

To show the behavior and the powersifift/reset, we consider a search program. Typically, a
search program is written with backtracking which makes a program comiplstead of backtracking,
we can write a search program in a straightforward manner if we ara giwe-deterministic operators.
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For example, the following functiogueen solves the N-Queen problem using three non-deterministic
operatorschoice num, fail, andstart:

let queen n =
let rec loop i solution =
if i <= 0 then solution
else let j = choice_num n in
let solution2 = j :: solution in
if is_safe solution2 then loop (i - 1) solution2
else fail ()
in start (fun () -> loop n [1);;

A function is_safe checks whether the current partial solution satisfies the condition of Qedén
problem or not. The above function has an extremely simple structure.otisels a new queen i
checks if it is safe to place the queen in the current partial solution, andsijfittloops to place more
gueens to the new partial solution. There is no backtracking. The trick is math-deterministic operator
choice_num which chooses an integer between 1 ambn-deterministically. When the choice was not
good, the function call§ail which aborts the current execution and triggers another choice. In othe
words, all the backtracking mechanisms are embedded into these oparatave can write a function
without thinking about backtracking.

Then, how can we define such operators? One answer is, &hiiseé/reset: 1

let choice_num n = shift (fun k -> fun cont —>
let rec loop i =
if i <= 0 then cont ()
else k i (fun (O -> loop (i - 1))
in loop n);;
shift (fun k -> fun cont -> cont ());;
reset (fun () -> let r = £ () in fun
(fun () -> raise Not_found);;

let fail ()
let start f

-> r)

The operatoehoice_num saves the current computationkdrand executes it for all the possible choices
by callingk in the recursive functioboop. In this programk and the additional argumesidnt represent
the so-calleduccess continuation andfailure continuation, respectively [SICP, Chapter 4.3]. The former
is the computation to be backtracked, and the latter keeps other choices iggleeetl byfail. The
failure continuation is passed around by making the context higher;avbah is initialized bystart.

The non-deterministic operators enable us to sepd@iteto search fromwhat to search. Such
operators can be implemented usi#lg ft/reset.

3 Caml Light and ZINC

The Caml Light system is a lightweight and portable implementation of the CamlagediLer97]. It
has a relatively simple type system (without modules or objects as was ind@duc©Caml) but is
sophisticated enough to write complex programs. Therefore, Caml Liglgssas a good platform for
implementing new features such&sift andreset.

Let us see how Caml Light executes programs. A program in Caml Lighinigpiged into a code
sequence of the ZINC abstract machine [Ler90]. The ZINC abstrachima uses an argument stack,
a return stack, an environment, an accumulator, a heap, and a proguaercto execute code. Each
component is used as follows:

1The definition of these operators is due to Chihiro Kaneko.
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Argument stack It stores arguments of function calls andnark (henceforthtMARK) which indicates a
boundary of arguments.

Return stack It mainly stores return frames and temporary values. The latter is callecha.cate
components of a return frame include a program counter, an environarehgy cache size (the
number of temporary values). The components of a cache include variatiteduced by.et and
arguments of function calls. Trap frames which are used to implement excgptie also stored.

Environment It stores values for variables. When closures are created, a néwwranent is created
from the current cache.

Accumulator It stores a closure when a function is called and the first argument wpemadive is
called. The results of function calls are also stored.

Heap It stores various values such as closures, environments, pairspatiddlpoint numbers.

The ZINC abstract machine uses two techniques to execute curried fumefiiciently by storing
aMARK (a distinguished value) in the argument stack. The first one is to avoitiasres closures for
curried functions when enough arguments are supplied. The secerid tmapply a returned function
directly to its arguments. Since the introductiorsafift/reset does not affect the former, we describe
the latter in detail.

Forexample{fun x -> x) (fun y -> y + 1) 4iscompiled into the following code sequence:

Pushmark // push a MARK onto the argument stack
Quote 4 // push 4 onto the argument stack via the accumulator (accu)
Push
Closure 3 // push a closure of Label 3 onto the argument stack via accu
Push
Closure 2 // set a closure of Label 2 to accu
Apply // call a function stored in accu
function:
Label 2:
Label 5:
Access 0 // set the Oth element of the environment to accu
Return // return to the caller or consume one argument
Label 3:
Label 4:
Quote 1 // push 1 onto the argument stack via accu
Push
Access 0O // set the Oth element of the environment to accu
AddInt // addition of two integers
Return // return to a caller or consume one argument

After storing aMARK in the argument stack using tReshmark instruction 4 and a closuréun y -> y

+ 1 (Label 3) are pushed onto the argument stack. Then, a funétianx -> x (Label 2)is called.
A function application is done by thipply instruction (if the application is not in a tail position). The
behavior ofApply is defined as follows:

(1) Push areturn frame including a program counter (i.e., a return sgjdreto the return stack.

(2) Move an element stored in the top of the argument stack (i.e., the fitgharg) to the current
cache area.
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(3) Invoke a closure stored in the accumulator.

If we do not employ any optimization, a closuren y -> y + 1isreturned to a caller as a result of
fun x -> x, andthenitis applied té. However, when an argument is found on the argument stack, we
can applyfun y -> y + 1to it, shortcutting the return followed by the call. This handling is realized
by theReturn instruction inserted at the end of function bodies. The behaviaeoifirn follows:

e If the top of the argument sta¢gkaMARK: no arguments are applied to the current result (stored in
the accumulator); return to a caller.

(1) Discard the current cache.
(2) Remove a1ARK from the top of the argument stack.
(3) Jump to a caller by restoring a return frame.

e If the top of the argument stacki®t aMARK: at least one argument is found for the current result;
execute the application without returning to a caller.

(1) Discard the current cache.

(2) Move a value stored in the top of the argument stack (i.e., the first argliitoea new cache
area.

(3) Directly jump to a closure which is stored in the accumulator.

If the top of the argument stack iSMARK, it means there is no applicable argument, so we return to a
caller by restoring a return frame. If the top of the argument stack is MaR®, on the other hand, it
means there is at least one applicable argument. In this case, we canepeaisighstored in the top of
the argument stack to a closure in the accumulator because the accumubaidrtsbid a closure if a
program has passed a type checker. Réturn instruction enables us to call a function directly without
returning to a caller if arguments of a result are given.

The behavior of thapply andReturn instructions with cache are summarized as follows. (A pair
of code and an environmelit,e) represents a closure,represents 8ARK, and a triplet of code, an
environment, and a cache si@ge, m) represents a return frame.)

Code Accu. Env. | Size | Arg. stack Return stack
Apply;cop | a=(ci,e1) | € 11%) V.S r
C1 a e 1 S V.(Cp, €, Mp).r
Return; Co a € m €S Vo ..Vm-1-(C1,€1,M).Io
C1 a e my S r
Return;Cp | a=(C1,€1) | € m V.S \Q...Vm-1.To
C1 a e 1 S V.o

We support the optimization realized by #eturn instruction in our implementation when the body
of shift orreset returns a function and its argument is available at the return time. See Se@&ion 4

4 Implementation

In this section, we describe the implementatiosbift/reset in Caml Light in detail.

First, we extended the syntax of intermediate languagessittit andreset. We employed Asai
and Kameyama'’s polymorphic type system [AKO7] and slightly modified it to attaghe evaluation
order of Caml Light (i.e., call-by-value, right-to-left). We did not use tlueity restriction but used the
value restriction employed by Caml Light.
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In the bytecode interpreter, we added four instructi8nsft, Reset, EndSR, andCallK as prim-
itives to supporshift/reset. Bothshift andreset are compiled into code that sets the argument
to the accumulator as a closure and execAtest andReset instructions, respectively. The body of
shift andreset are compiled into code whe&ndSR is inserted befor&eturn to enable the opti-
mization shown in the previous section. T€&l1K instruction represents the work to be done when a
captured continuation is invoked. The definition of the behavior of thesrugt®ns is at the heart of
the implementation. Before describing them, however, let us summarize theidipgementation of
shift/reset in the MinCaml compiler [MAO9]:

e Whenreset is executed, set theeset mark on the stack.

e Whenshift is executed, move a sequence of stack frames down to the neasestmark to the
heap.

e Maintain the invariant that a return address is always stored immediately thedeset mark.

Thereset mark introduced here (not to be confused withNheK in the ZINC abstract machine) is used
to delimit a stack. In our implementation in Caml Light, we basically follow the same impletiem
method, which is described below.

4.1 Thelmplementation of Reset

The implementation of thReset instruction is as follows:
(1) Push a return frame onto the return stack.
(2) Store thereset mark in both the argument stack and the return stack.
(3) Invoke a closure stored in the accumulator (this closure corresgoride argument afeset).

The invariant of our implementation in the Caml Light system is “in the return stackturn frame

is always stored immediately under theset mark.” This invariant is almost the same as the one in
the implementation in MinCaml, because a return frame corresponds to a refiness.  Since the
Caml Light system uses two stacks (the argument stack and the returj) stactore thereset mark

in both of them. Thereset mark in both the argument stack and the return stack are global pointers (the
reset pointers). Itis stored bgeset andCallK instructions. We update the value of theset pointer

when storing it in the stacks.

4.2 Thelmplementation of Shift and Continuation Invocation
Based on the above implementatiorReket, we implemented thehift instruction as follows:

(1) Allocate a frame in heap to create a closure of a captured continuation.

(2) Move the stack frames down to the neanssiet mark (excluding thereset mark itself) from
both the argument stack and the return stack to the closure allocated in (1).

(3) Store the following information into the closure allocated in (1): the prmograunter to be exe-
cuted when this closure is applied, an environment, sizes of the two copdrstmes, a program
counter (corresponding to the captured continuation), a cache siasiti@p of the argument stack,
and a trap pointer to the heap (first two information is stored as a standatwgdelio ZINC, and
last two information is required to be compatible with exceptions).

5
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(4) To treat the closure as a first argument of the argumestioft, store it into the accumulator.
(5) Invoke the closure stored in the accumulator (this closure corrdsgorthe argument gfhift).

In contrast to the standard closures in ZINC that contain a progranteroand an environment,
closures created for captured continuations contain other informatibnesumopied stack frames and a
cache size. They are used to restore the context in véhicht was called, when a captured continuation
is invoked. The instruction to be executed when the closure is appligad ix. In other words, all the
closures for captured continuations have the same program countein,ig/ket at (3). Their behavior is
different, however, because copied stack frames are different.

A trap frame which is used to implement exceptions includes two pointers to the stais to the
previous trap frame and the other is to the argument stack. A trap frameed #tdhe return stack and a
pointer to the current trap frame (the trap pointer) is updated whems invoked. When an exception is
raised, the return stack and the argument stack are shifted to the trap poithi position pointed to by
a trap frame, respectively. If frames of the return stack captureshb¥t include a trap frame pointed
to by the trap pointer, we have to change the value of the trap pointer to pdh teearest remaining
trap frame. Moreover, we have to correctly connect pointers includdteioopied stack frames when a
captured continuation is invoked.

The invocation of captured continuations is treated as an ordinary furegplication. When in-
voked, they execute th#11K instruction. The behavior @fallK is the following:

(1) Store thereset mark in both the argument stack and the return stack.
(2) Set the first argument that is stored in the top of a cache area to th@aletor.

(3) Copy the two stack frames stored in the closure to the top of the argutaehktand the return
stack.

(4) Set the program to the one counter preserved in the closure (i.erodp@m counter when this
continuation was captured).

In the implementation, we do not storeMaRK at (1) because we force storing a return frame before a
captured continuation is invoked. We maintain the invariant that a return fimaleays stored in the
top of the return stack when storing theset mark in this way.

When the execution of the body péset orshift is finished, i.e., thEndSR instruction is executed,
we perform the optimization dfeturn: if a function is returned as a result oéset or invocation of a
captured continuation and its arguments have been already given, walt#re returned function di-
rectly. So, the behavior @&ndsR is to discard the frames so thdturn optimization becomes possible:

(1) Discard the frames down to the nearestet mark (including thereset mark itself) in both the
argument stack and the return stack.

(2) ExecuteReturn.
Let us examine execution of expressions includiaget andshift to see how they are handled.

The Return instruction is executed at the end of reset

For example, let us consider an expressteget (fun () -> fun x -> x) 3. First, aMARK and3
are pushed onto the argument stack and the argumeetet is set to the accumulator. Thetgset is
executed and theeset mark is stored in the two stacks. By invoking the argumerRegfet, a closure

6
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fun x -> x is set to the accumulator. NeXndSR is executed to remove theeset marks from the
two stacks, an@eturn is executed. Since is on the top of the argument stack, an applicaijéon x
-> x) 3is directly executed.

In this way, we maintain the optimization Béturn in the presence afeset.

The two stack frames are moved by shift

As another example, let us consider an expressein £ x = shift (fun k -> k x) in reset
(fun () -> £ 3 + 2). First, a closuref is stored in a cache area. After setting the argument of
reset to the accumulatoBeset is executed and theeset marks are stored in the two stacks. Nexxt,
aMARK and3 are pushed onto the argument stack, ainislcalled. Then, a return frame (corresponding
to +) is stored in the return stacg,(an argument of) is moved from the top of the argument stack to a
cache area (the return stack), @d £t is executedShift moves frames of the argument stagkafd
theMARK) and frames of the return stack (the return frame &n the heap.

The execution moves on to the bodysfift.

The captured continuation copiestwo stack frames

In the execution of the body afhift, a MARK and the argumerg (x) are pushed onto the argument
stack.3 is moved to the top of the return stack wherx is invoked. This value is regarded as the result
of the execution okhift and is set to the accumulator siricés a captured continuation. Thefg11K
pushes theeset marks onto the top of the two stacks, copies back two stack franasd theMARK

for the argument stack, and the return frame aridr the return stack) from a clousure, and executes a
continuation ofshift.

The argument stack stores necessary values to execute capturedaiomiis, and the return stack
stores temporary values and the calling chain until a captured continuatiorokedh We restore the
necessary values to execute a captured continuation by copying bat¥ahisation to the two stacks.

4.3 Summary of the Implementation

Let us summarize the implementationstfift/reset in the ZINC abstract machine. The definition of
the four instructionsReset, Shift, CallK, andEndSR is as follows. {p; andvs, represent aeset
pointer and a stack frame of an argument stack, respectively, whilendvs, are for a return stack.)

Code Accu. Env. | Size | Arg. stack Return stack

Reset; Cp a=(ce) € Mo S r

c a e 0 I Pa-S rpr.(Co, Mo, €p).1
Shift; ¢ (c,e) e My | VSa.IpaS VST pr.r

c ((CallkK,eq),C1,M, VS, VS) | € 0 I Pa.S rpr.r
Callk; Cp ((Callk,eq),C1,M, VSq, VS ) e m S v.r

c1 v er M | VSa.Ipa.S VS .rpr.r

EndSR; Return; C a e m VSa.f Pa.S | VS .rpr.(Co,Mo,€p).r

Return; C a e 0 S (Co, Mo, €p).1

The compiler¢’[—] is defined as follows. (Theur instruction creates a closure from an argument
and an environment.)

¢[shift (AM)] = Cur(%¢[M]; EndSR; Return); Shift

]
¢ [reset (AM)]] = Pushmark; Cur(%[M]; EndSR; Return); Reset
Creset (AM) Ni...N] =
Pushmark; %' [Ng]; Push; ...; €[Ni]; Push; Cur(%’[M]; EndSR; Return); Reset

7
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The compilation okhift is simply defined as the creation of the argument closure followed by the
Shift instruction. At the end of the body ehift, theEndSR instruction is inserted before tiketurn
instruction to remove theeset mark. ThePushmark instruction is not required foghift. This is
similar to the compilation of a primitive function application:

¢[P(My,...,Mq)] = E[M]; Push; ...; €[My]; Push; Prim(p)

where the number of arguments is fixed arMhBK is not inserted.

The compilation ofreset is split into two cases depending on whether additional arguments are
(syntactically) available. In either cag®yshmark is required at the beginning to achieve the optimiza-
tion of Return correctly. When the execution of the body ©fset finishes,EndSR is executed to
remove thereset mark (set byReset or Callk instruction) followed byReturn. At this point, aMARK
is used to check whether arguments to the current result are availalé dihe compilation oteset
is similar to the compilation of the standard function application:

C[(MNg ... Ny)] = Pushmark; €[Ng]; Push; ...; €[[Ny]}; Push; €[M]; Apply

Here,Pushmark is used to indicate available arguments.

4.4 Garbage Collection

The Caml Light system supports generational garbage collection (@€)garbage collector searches
pointers stored in the argument stack and the return stack when the GCkednverames pointed to
by these pointers are reallocated onto the heap and the pointers are retorltdd the address of the
reallocated frames. We call this process recursively according teheddrmation (a size of a frame,
a color used in the GC, and a kind of a frame) of reallocated frames. @ahef included in the closure
created byshift are handled correctly because they come with header information. Thadaityon

to the GC system is a correct traversal of teeet pointers stored in the stacks.

5 Examples

In this section, we demonstrate various execution examples. We give eglatiany examples to show
what arises in a use @hift/reset in a typed setting. Because almost all the examples require knowl-
edge on answer types, we first review the typestfft/reset [AKO7, DF89].

5.1 The Type System for Shift and Reset

A judgment of the type system fathift/reset is defined ad’; a F e: 1; B, which means that the
expressiore has the type under the type context, and the execution of changes the answer type
from a to (. Intuitively, the answer type is a type of the value that surroundiget returns.

Onthe other hand, If; a - e: 1; a holds for any type variable, i.e., the execution of the expression
e does not affect the answer typeeis calledpure, and this judgment is representedlas, e: 1. Pure
expressions do not have any control effect and do not changesiweeatype. Constant, functions, and
expressions surrounded bgset are pure.

A function type is expressed 8s/ A -> T / B. Itis atype of a function from the typ@to T, and
the answer type is changed fralto B when the function is invoked. If a function is pure having the
same type variable as its answer types, its type is simply writtén-as T. We also introduce a notation
S => T to indicate arimpure function. It is a function frons to T whose answer type are not the same
type variable but are hidden for the ease of readability.

8
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52 N-Queen

Let us execute the queen program shown in Section 2. Their types aneihfis follows:

choice_num : int => int
fail : unit => ’a

start : (unit => ’a) => ’b
queen : int -> int list

# queen 4;;

- : int list = [2; 4; 1; 3]

Sincechoice num receives an integer and returns an integer non-deterministidalty,=> int
properly describes the behaviorefoice num. The use of> instead of-> indicates that an execution
of this function may incur control effects. In fact, singieoice_num usesshift in its definition, passing
an integer tachoice num causes the current continuation to be captured.

The type offail resembles that afaise: both return an arbitrary type 'a. Becauieil stops the
current computation and triggers backtracking,th&l expression itself can have an arbitrary type.

In this example, we can regaed> as an ordinary function type, forgetting about the answer type.
However, we often have to consider the answer type if weshs€t andreset in a program. To make
the answer type explicit, our implementation supports a directive to changeath¢éypes are shown.
Although our implementation omits the answer type by default and sseghen control effects are
used, if they are required, answer types can be displayed expﬁﬁcitly.

5.3 Times

The functiontimes receives a list of integers and returns their product. Since the resulienlif the
given list contain®, we can throw away the current computation and retuwhenever we encounter
0.

# let rec timesO = function
I 0O -—>1
| 0 :: _ => shift (fun k -> 0)
| a :: rest -> a * timesO rest;;
timesO : int list => int = <fun>
# let times 1lst = reset (fun () -> timesO 1lst);;
times : int list -> int = <fun>
# times [1; 2; 3];;

- : int = 6
# times [1; 2; 0; 31;;
- :int =0

Because is immediately returned whemis found, it constrains the type of its context to et.
With explicit answer types, the type ofimes0 is actuallyint list / int -> int / int. There-
fore, a program such agset (fun () -> print_int (timesO [1; 2; 3])), is not typable be-
cause the type of surroundingset is notint. On the other hand, the type ofimes is pure. The
answer type otimes is not changed even though impuremes0 is executed inside, because its effect
is delimited within thereset.

2When all the answer types are explicit, the typestofice num, fail, andstart become as follows:
choicenum : int / ((unit / ’a -> ’b / ’¢) / ’a => ’b / ’c) ->
int / ((unit / ’a -> ’b / ’c) / ’a -> ’b / ’c)
fail : wunit / ’a -> ’b / ((unit / ’c -> ’d / ’e) / ’c -> ’d / ’e)
start : (unit / (a -> ’b) -> ’b / ((unit -> ’c) / ’d -> ’e / ’£)) / ’d -> ’e / ’f
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54 Append and Sprintf

As an example of answer type modification, we showapgend function, with the printing of answer
types enabled:

# let rec append = function
| [ -> shift (fun k -> k)
| a :: rest -> a :: append rest;;
append : ’a list / ’b -> ’a list / (’a list -> ’b) = <fun>
# let appl23 = reset (fun () -> append [1; 2; 31);;
appl23 : int list / ’_a -> int list / ’_a = <fun>
# let appl23’ 1st = (reset (fun () -> append [1; 2; 3])) 1lst;;
appl123’ : int list -> int list = <fun>
# appl23 [4; 5; 6];;
- : int list = [1; 2; 3; 4; 5; 6]

Suppose thasppend is invoked under the answer typ®. The type of a continuation captured by
shift (fun k -> k) iS’a list -> ’bbecauseppend itself returns a value of typea 1list. This
continuation is returned to the surroundirgset, so the answer type afppend is modified from’b to
’a list -> ’b. It means this example cannot be typed in a system that does not allow ter ayige
modification.

Because the Caml Light system employs the value restriction, the answeftyygelet-bound value
app123 is a weak polymorphic type_al® In this case, we can avoid the weak polymorphic type by
n-expandingapp123 and definingapp123 as a function that receives a list of integers, asgp123°.

As another example, we show sprintf function [Asa09].

# let int x = string_of_int x;;

int : int -> string = <fun>

# let str (x : string) = x;;

str : string -> string = <fun>

# let percent to_str = shift (fun k -> fun x -> k (to_str x));;

percent : (’a / ’b -> ’c / ’d) / ’e => ’c / (’a/ ’b -> ’e / ’d) = <fun>
# let sprintf p = reset (fun () > p O);;

sprintf : (unit / ’a -> ’a / ’b) -> ’b = <fun>

# sprintf (*x sprintf ("The value of %s is %d.", "x", 3) *)
(fun () -> "The value of " ~ (percent str) ~ " is " ~ (percent int) ~ ".") 3 "x";;
- : string = "The value of x is 3."

A functionpercent receives a functiomo_str that returns the string representation of its argument.
It then aborts computation and returns a function to the enclosing contexn YW returned function is
applied to an argument, it changes its representation into a string and rethenad®rted computation.
We can understand this behavior from the typeefcent, if we instantiate the type gercent as
follows:

(’a -> string) / ’e -> string / (Ca -> ’e)

The answer type opercent (the type of its context) is modified from the originad to >a -> ’e,
enabling to accept another argument of type

A function sprintf receives a thunk that represents a format and executes it uadet. The
result of applyingsprintf can accept as many arguments as the numbpexdent in the format. In

3This type becomes a polymorphic type if we employ the purity condition [AKO7].

10
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the above example, it receives two argumen(sf type int) and"x" (of type string) and returns a
string "The value of x is 3." Because the evaluation order of the Caml Light system is right-to-
left, (percent int) is evaluated beforépercent string) is evaluated. So the order of arguments
is different from a standarslprintf function.

In this example, the result gfprintf (fun () -> ...) is a function that receives two values of
typesint andstring, and returns a string. This is the example where execution would fail if weto
consider whether ®ARK is on the top of the argument stack or not when the execution of the body of
reset is finished.

55 Partial Evaluation

As an example that uses a data type definition, we show an online partight®ralgingshift/reset
[Asa07]. In the following program, a functiogensym creates a new variabledd adds a new element
to an environmentget gets a value from an environment using a key, amgty_env represents an
empty environment. The main functionpeval. It receives a term of the lambda calculus extended
with shift/reset andlet represented as an abstract syntax tree, defined as shown in Sectiuh 1,
returns a partially evaluated term.

# (x dynamic type and static type *)
type sval_t = Dyn of t | Sta of t * (sval_t / sval_t -> sval_t / sval_t);;
Type sval_t defined.
# (% get a program (term) *)
let 1ift = function Dyn d -> d | Sta (d, s) -> d;;
lift : sval_t -> t = <fun>
# let rec peval term env = match term with (* partial evaluator *)
| Var x -> get x env
| Lam (x, t) -> let new_x = gensym x in let new_k = gensym "k" in
Sta (Lam (new_x, Shift (new_k,
1ift (reset (fun () -> Dyn (Reset (App (Var new_k,
1ift (peval t (add env x (Dyn (Var new_x))))))))))),
fun arg -> peval t (add env x arg))
| App (t1, t2) -> let f = peval tl env in let a = peval t2 env in
(match f with
| Dyn d -> let new_t = gensym "t" in
shift (fun cont -> Dyn (Let (new_t, App (d, 1lift a),
1lift (cont (Dyn (Var new_t))))))
| Sta (d, s) -> s a)
| Shift (k, t) —>
shift (fun cont -> let new_v = gensym "v" in
peval t (add env k
(Sta (Lam (new_v, Reset (lift (cont (Dyn (Var new_v))))),
cont))))
| Reset t -> reset (fun () -> peval t env)
| Let (x, tl, t2) -> peval (App (Lam (x, t2), t1)) env;;
peval : t => (string => sval_t) => sval_t = <fun>

# let f term = init (O; (* initialize gensym *)
let result = lift (reset (fun () -> peval term empty_env)) in (* then do PE, *)
print_string (to_string result); print_newline Q;; (* and print a result *)

f : t -> unit = <fun>
# let e = Lam ("x", Reset (App (Shift ("k", Var "k"), Var "x")));;
e : t = Lam ("x", Reset (App (Shift ("k", Var "k"), Var "x")))

11
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# £ e;;
(lam x1. (shift k2. (reset (k2 @ (lam v3. (reset (let t4 = (v3 @ x1) in t4)))))))
- : unit =

A type sval_t represents a symbolic value, which is either a dynamic value or a static vatee. T
former is used to residualize a program, while the latter is used to reducegeaprauring partial
evaluation. A dynamic valuByn brings a program text, while a static valgea brings a static value in
addition to a program text. The functiaaft turns a symbolic value into a program text by extracting its
dynamic part. Irpeval, shift is used for let-insertion of a function application and for the evaluation
of shift itself.

In the current implementation, if the answer types of a function type is omitted,las £ (x :
int -> int) = x, we regard this function as pure and complement them with a polymorphic éype v
able’a. However, we disallow omission of answer types in a type declarationube@mplementing
type variables leads to unbound type variables:

# type t = A of int / ’a -> int / ’a;;
Toplevel input:

> type t = A of int / ’a -> int / ’a;;
5 .-
The type variable a is unbound.

Although some programs are typable by mechanically adding type paranadérng,ype ’a t = A
of int / ’a -> int / ’a, this is not always the case. In fact, the following natural definition of
sval_t for the above example:

type sval_t = Dyn of t | Sta of t * (sval_t -> sval_t);;
does not work, because neither

type ’a sval_t =
| Dyn of t | Sta of t * (’a sval_t / ’a -> ’a sval_t / ’a);;

nor

type (’a, ’b) sval_t =
| Dyn of t | Sta of t * ((’a, ’b) sval_t / ’a -> (’a, ’b) sval_t / ’b);;

passes the type check. Rather than automatically complementing type vaniabiesk the user to write
them explicitly, as in the definition of typeval_t at the beginnig of this section.

6 Reated Work

Gasbichler and Sperber presented a direct implementatiginidft /reset andcontrol in the Scheme
48 system [GS02]. They showed that the direct implementation eases theag®f the indirect imple-
mentation usingall/cc and improves the execution efficiency. They employed incremental stagk/he
strategy and used PreScheme, a virtual machine for the Scheme 48 system.

Rompf et al. implementeghift/reset that supports the answer type modification using the plug-
gable typing architecture of Scala [RMOQ9]. They discriminate expressitrether they have control
effects or not using types, and selectively transform them into CP%. Mieéhod improves the efficiency
problem of full CPS transformation and achieves the implementation in a widely{rogramming lan-
guage.

Kiselyov showed a generic approach to implement multi-prompt delimited conpextors and
applied it to OCaml and Scheme [Kis10]. He implementedft/reset directly without modifying
the existing implementation that supports both the exception and the recaweryhie stack overflow.

12
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7 Conclusion and Future Work

We described the direct implementationstfift/reset in the Caml Light system and demonstrated
various examples on it. Although the basic idea is the same as our previoksowdahe MinCaml
compiler, applicability of the result differs significantly. We can now progmith shift/reset in the
typed setting easily and experiment with various programs on it.

We are now trying to establish the formal correctness of our implementatiog thenfunctional
derivation approach. The comparison with other implementation techniquaséimed as future work.
We are also interested in writing various applications usingft andreset. How to tame the verbose
answer types, not only in the types of expressions but also in erroegesss another interesting topic.
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