{-# OPTIONS --rewriting #-}
module Reflect4a where
open import CPSterm
open import DStermK
open import DSTrans
open import Data.Product
open import Function
open import Relation.Binary.PropositionalEquality
mutual
lemma-cpsSubstV : {var : typK → Set} {τ₁ τ₂ : cpstyp} →
{v : cpsvalue[ var ∘ dsT ] τ₂} →
{v₁ : (var ∘ dsT) τ₂ → cpsvalue[ var ∘ dsT ] τ₁} →
{v₂ : cpsvalue[ var ∘ dsT ] τ₁} →
(sub : cpsSubstV v₁ v v₂) →
SubstVK {var} (λ x → dsV (v₁ x)) (dsV v) (dsV v₂)
lemma-cpsSubstV sVar= = sVar=
lemma-cpsSubstV sVar≠ = sVar≠
lemma-cpsSubstV sNum = sNum
lemma-cpsSubstV {var} (sFun sub) = sFun (λ x → lemma-cpsSubst (sub x))
lemma-cpsSubstV sShift = sShift
lemma-cpsSubst : {var : typK → Set} {τ₁ τ₂ : cpstyp} {Δ : conttyp} →
{e : (var ∘ dsT) τ₂ → cpsterm[ var ∘ dsT , Δ ] τ₁}
{e′ : cpsterm[ var ∘ dsT , Δ ] τ₁} →
{v : cpsvalue[ var ∘ dsT ] τ₂}
(sub : cpsSubst e v e′) →
SubstK {var} (λ x → dsE (e x)) (dsV v) (dsE e′)
lemma-cpsSubst (sRet subK subV) =
sRet (lemma-cpsSubstC subK) (lemma-cpsSubstV subV)
lemma-cpsSubst (sApp subV₁ subV₂ subC) =
sApp (lemma-cpsSubstV subV₁) (lemma-cpsSubstV subV₂) (lemma-cpsSubstC subC)
lemma-cpsSubst (sShift2 subC subK) =
sShift2 (λ x → lemma-cpsSubst (subC x)) (lemma-cpsSubstC subK)
lemma-cpsSubst (sRetE subC sub) =
sRetE (lemma-cpsSubstC subC) (lemma-cpsSubst sub)
lemma-cpsSubstC : {var : typK → Set} {τ₁ τ₂ τ₃ : cpstyp} {Δ : conttyp} →
{v : cpsvalue[ var ∘ dsT ] τ₂} →
{k₁ : (var ∘ dsT) τ₂ →
cpscont[ var ∘ dsT , Δ , τ₃ ] τ₁} →
{k₂ : cpscont[ var ∘ dsT , Δ , τ₃ ] τ₁} →
(sub : cpsSubstC k₁ v k₂) →
SubstCK {var} (λ x → dsC (k₁ x)) (dsV v) (dsC k₂)
lemma-cpsSubstC sKVar≠ = sKVar≠
lemma-cpsSubstC sKId = sKId
lemma-cpsSubstC (sKLet sub) = sKLet (λ x → lemma-cpsSubst (sub x))
mutual
lemma-cpsSubst₂ : {var : typK → Set} {τ₁ τ₂ τ₄ : cpstyp} {Δ : conttyp} →
{e₁ : cpsterm[ var ∘ dsT , K τ₂ ⇒ τ₄ ] τ₁} →
{e′ : cpsterm[ var ∘ dsT , Δ ] τ₁} →
{c : cpscont[ var ∘ dsT , Δ , τ₂ ] τ₄} →
(sub : cpsSubst₂ e₁ c e′) →
SubstK₂ {var} (dsE e₁) (dsC c) (dsE e′)
lemma-cpsSubst₂ (sRet subC) = sRet (lemma-cpsSubstC₂ subC)
lemma-cpsSubst₂ (sApp subC) = sApp (lemma-cpsSubstC₂ subC)
lemma-cpsSubst₂ (sShift2 subC) = sShift2 (lemma-cpsSubstC₂ subC)
lemma-cpsSubst₂ (sRetE subC) = sRetE (lemma-cpsSubstC₂ subC)
lemma-cpsSubstC₂ : {var : typK → Set} →
{τ₁ τ₂ τ₄ τ₅ : cpstyp} {Δ : conttyp} →
{k₁ : cpscont[ var ∘ dsT , K τ₂ ⇒ τ₄ , τ₅ ] τ₁} →
{c : cpscont[ var ∘ dsT , Δ , τ₂ ] τ₄} →
{k₂ : cpscont[ var ∘ dsT , Δ , τ₅ ] τ₁} →
(sub : cpsSubstC₂ k₁ c k₂) →
SubstCK₂ {var} (dsC k₁) (dsC c) (dsC k₂)
lemma-cpsSubstC₂ sKVar= = sKVar=
lemma-cpsSubstC₂ (sKLet sub) = sKLet (λ x → lemma-cpsSubst₂ (sub x))
mutual
correctVK : {var : typK → Set} {τ₁ : cpstyp}
{v v' : cpsvalue[ var ∘ dsT ] τ₁}
(red : cpsReduceV v v') →
ReduceVK {var} (dsV v) (dsV v')
correctVK (REtaV v) = REtaV (dsV v)
correctVK (RFun e e' red) =
RFun (λ x → dsE (e x)) (λ x → dsE (e' x)) (λ x → correctK (red x))
correctVK RId = RId
correctVK (RTrans red₁ red₂) = RTrans (correctVK red₁) (correctVK red₂)
correctK : {var : typK → Set} {τ₁ : cpstyp} {Δ : conttyp} →
{e e′ : cpsterm[ var ∘ dsT , Δ ] τ₁} →
cpsReduce e e′ →
ReduceK {var} (dsE e) (dsE e′)
correctK (RBetaV sub subK) =
RBetaV (lemma-cpsSubst sub) (lemma-cpsSubst₂ subK)
correctK (RBetaLet sub) = RBetaLet (lemma-cpsSubst sub)
correctK RShift = RShift
correctK RShift2 = RShift2
correctK RReset = RReset
correctK (RRet₁ red) = RRet₁ (correctCK red)
correctK (RRet₂ red) = RRet₂ (correctVK red)
correctK (RApp₁ red) = RApp₁ (correctVK red)
correctK (RApp₂ red) = RApp₂ (correctVK red)
correctK (RApp₃ red) = RApp₃ (correctCK red)
correctK (RShift₁ red) = RShift₁ (correctCK red)
correctK (RShift₂ red) = RShift₂ (λ x → correctK (red x))
correctK (RRetE₁ red) = RRetE₁ (correctCK red)
correctK (RRetE₂ red) = RRetE₂ (correctK red)
correctK RId = RId
correctK (RTrans red₁ red₂) = RTrans (correctK red₁) (correctK red₂)
correctCK : {var : typK → Set} {τ₁ τ₂ : cpstyp} {Δ : conttyp} →
{k k' : cpscont[ var ∘ dsT , Δ , τ₁ ] τ₂} →
(red : cpsReduceC k k') →
ReduceCK {var} (dsC k) (dsC k')
correctCK (REtaLet k) = REtaLet (dsC k)
correctCK (RKLet red) = RKLet (λ x → correctK (red x))
correctCK RId = RId
correctCK (RTrans red₁ red₂) = RTrans (correctCK red₁) (correctCK red₂)